Claim Missing Document
Check
Articles

Found 4 Documents
Search

Cerdas Digital dengan Artificial Intelligence: Solusi Teknologi untuk Pelayanan dan Keamanan Publik Tristanti, Novi; Fanani, Galih Pramuja Inngam; Romadloni, Nova Tri; Efendi, Burhan; Setiani, Hani
Cahaya Pengabdian Vol. 2 No. 1 (2025): Juni 2025
Publisher : Apik Cahaya Ilmu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61971/cp.v2i1.207

Abstract

Artificial intelligence (AI)-based digital technology presents both opportunities and challenges for village security officers, particularly Village Supervisory Non-Commissioned Officers (Bhabinkamtibmas), in addressing the spread of hoaxes and meeting the demands for fast and efficient public services. The low level of digital literacy and practical skills in utilizing AI at the village level prompted the implementation of a community service program titled “Digital Intelligence with Artificial Intelligence: Technological Solutions for Public Service and Security.” This program aimed to enhance Bhabinkamtibmas’s understanding and ability to apply AI in public service and village security. The method used was a combination of theoretical and practical training for 30 Bhabinkamtibmas participants, covering three main topics: chatbot utilization for public services, face recognition for security support, and AI-based hoax content detection. Effectiveness was evaluated through pretest and posttest assessments. The results showed an average improvement of 40%, with posttest scores reaching 85% for chatbot usage, 80% for face recognition, and 75% for hoax detection. These findings demonstrate that practice-based training effectively improves Bhabinkamtibmas’s digital literacy and technical skills. In conclusion, this program successfully equips Bhabinkamtibmas as digital literacy agents capable of leveraging AI to strengthen public services and village security, contributing to the development of an adaptive Smart Policing ecosystem in the digital era.
Evaluasi Sentimen Pengguna ChatGPT Menggunakan Naive Bayes: Tinjauan dari Confusion Matrix dan Classification Report Dianda Rifaldi; Tri Stiyo Famuji; Bella Okta Sari Miranda; Fauzan Purma Ramadhan; Iriene Putri Mulyadi; Vanji Saputra6; Fanani, Galih Pramuja Inngam
Jurnal Riset Sistem dan Teknologi Informasi Vol. 3 No. 2 (2025): Jurnal Riset Sistem dan Teknologi Informasi (RESTIA)
Publisher : Universitas Aisyiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30787/restia.v3i2.1990

Abstract

The development of artificial intelligence (AI) technology, particularly in natural language processing (NLP), has led to various innovations, including ChatGPT. Its growing popularity highlights the need for user sentiment analysis. This study evaluates user sentiment toward ChatGPT using the Naive Bayes algorithm. The dataset, obtained from Kaggle, consists of 500 labeled English tweets categorized as positive, neutral, or negative. The process involved text preprocessing, TF-IDF feature extraction, data splitting (80% training, 20% testing), and model training. The results show an accuracy of 56%, with the highest f1-score in the negative class (0.67) and the lowest in the neutral class (0.38). The model exhibits classification imbalance, with high precision but low recall in the neutral class, and high recall but low precision in the positive class. The confusion matrix further confirms frequent misclassifications between classes. These findings reflect the limitations of Naive Bayes in handling contextual relationships in text data. Improvements can be achieved through data balancing, enhanced NLP-based feature representation, and the application of more complex classification algorithms.
Pengenalan Citra Batik Tradisional Menggunakan Deep Learning untuk Klasifikasi Motif Daerah Fanani, Galih Pramuja Inngam; Muhammad Amirul Mu'min; Yana Safitri; Setiawan Ardi Wijaya; Novi Tristanti; Tri Stiyo Famuji
Scientific: Journal of Computer Science and Informatics Vol. 2 No. 1 (2025): Januari 2025
Publisher : Universitas Muhammadiyah Bima

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34304/scientific.v2i1.336

Abstract

Batik merupakan warisan budaya Indonesia yang kaya akan nilai estetika dan keragaman motif berdasarkan asal daerahnya. Namun, upaya digitalisasi dan klasifikasi motif batik secara otomatis masih menghadapi tantangan, terutama dalam hal ketersediaan dataset representatif dan pendekatan pemodelan yang optimal. Penelitian ini bertujuan untuk mengembangkan sistem klasifikasi motif batik berdasarkan daerah asal menggunakan metode deep learning berbasis Convolutional Neural Network (CNN). Dataset citra batik yang digunakan terdiri dari 1.200 gambar, mewakili empat daerah utama yaitu Solo, Pekalongan, Cirebon, dan Madura. Model CNN dirancang dengan empat blok konvolusi dan dua fully connected layer, serta dilatih menggunakan optimizer Adam dan teknik early stopping. Hasil eksperimen menunjukkan bahwa model mencapai akurasi klasifikasi yang tinggi dan mampu membedakan motif berdasarkan karakteristik visual khas masing-masing daerah. Meskipun terdapat sedikit kesalahan klasifikasi antara motif yang memiliki kemiripan visual, secara keseluruhan model menunjukkan kinerja yang baik dan stabil. Penelitian ini menyimpulkan bahwa pendekatan deep learning efektif dalam mengenali motif batik secara otomatis dan berpotensi diimplementasikan dalam aplikasi edukasi budaya maupun promosi digital batik berbasis kecerdasan buatan.
EKSPLORASI SENTIMEN PENGGUNA X TERHADAP ISU KESEHATAN MENTAL BERBASIS MACHINE LEARNING Rifaldi, Dianda; Famuji, Tri Stiyo; Fanani, Galih Pramuja Inngam; Ramadhan, Fauzan Purma; Mulyadi, Iriene Putri; Saputra, Vanji
Jurnal Rekayasa Perangkat Lunak dan Sistem Informasi Vol. 5 No. 2 (2025)
Publisher : Department of Information System Muhammadiyah University of Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/seis.v5i2.9594

Abstract

Mental health has become an increasingly relevant topic in the digital era, particularly on social media platforms such as X, which serve as public spaces for expressing opinions and sharing personal experiences. This study aims to analyze public sentiment toward mental health topics on Twitter using the Multinomial Naive Bayes algorithm. Data were collected from tweets containing mental health-related keywords and processed through text cleaning and feature extraction using the TF-IDF method. The classification results showed that the model achieved an accuracy of 71%, with stronger performance in identifying negative sentiment compared to positive sentiment. A WordCloud visualization also revealed the frequent appearance of terms such as “mental,” “health,” “self,” and “disorder,” reflecting the main focus of online discussions. These findings indicate that machine learning-based sentiment analysis is effective in capturing public perceptions of mental health issues on social media. This research is expected to contribute to the development of digital communication strategies and real-time monitoring of psychosocial issues in online spaces.