cover
Contact Name
Irpan Adiputra pardosi
Contact Email
irpan@mikroskil.ac.id
Phone
+6282251583783
Journal Mail Official
sinkron@polgan.ac.id
Editorial Address
Jl. Veteran No. 194 Pasar VI Manunggal,
Location
Kota medan,
Sumatera utara
INDONESIA
Sinkron : Jurnal dan Penelitian Teknik Informatika
ISSN : 2541044X     EISSN : 25412019     DOI : 10.33395/sinkron.v8i3.12656
Core Subject : Science,
Scope of SinkrOns Scientific Discussion 1. Machine Learning 2. Cryptography 3. Steganography 4. Digital Image Processing 5. Networking 6. Security 7. Algorithm and Programming 8. Computer Vision 9. Troubleshooting 10. Internet and E-Commerce 11. Artificial Intelligence 12. Data Mining 13. Artificial Neural Network 14. Fuzzy Logic 15. Robotic
Articles 80 Documents
Search results for , issue "Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023" : 80 Documents clear
Social Media Based Film Recommender System (Twitter) on Disney+ with Hybrid Filtering Using Support Vector Machine Ramadhan, Helmi Sunjaya; Budi Setiawan, Erwin
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12876

Abstract

In the current era, the culture of watching TV shows and movies has been made easier by the presence of the internet. Now, watching movies on platforms can be done from anywhere, one of which is Disney+. At times, people find it challenging to decide which film to watch given the multitude of genres and film titles available on these platforms. One solution to this issue is a recommendation system that can suggest films based on ratings. The recommendation system to be utilized involves Collaborative Filtering, Content-Based Filtering, and Hybrid Filtering. This is because Collaborative Filtering and Content-Based Filtering encounter issues like cold start, sparsity, and overspecialization. Thus, the objective of this study is to develop a recommendation system using Hybrid Filtering combined with Support Vector Machine (SVM). In this research, classification will be carried out using poly, linear, and RBF kernels with varying parameters. Techniques such as TF-IDF, RMSE, tuning, and data balancing with SMOTEN will be implemented to enhance accuracy during the classification process. The evaluation employed in this study utilizes the confusion matrix. Support Vector Machine, when tuned and combined with SMOTEN, achieves noteworthy results, particularly with the RBF kernel which attains a Precision score of 0.94. Recall produces a value of 0.93 with the Poly kernel, while the highest Accuracy, at 0.93, is achieved with the RBF kernel. Furthermore, the RBF kernel also demonstrates the highest F1-Score of 0.93. These findings illustrate elevated precision, recall, accuracy, and F1-Score within the context of hybrid filtering, achieved through the application of Support Vector Machine for classification and the implementation of the SMOTEN technique.
Image Augmentation for BreaKHis Medical Data using Convolutional Neural Networks Istighosah, Maie; Sunyoto, Andi; Hidayat, Tonny
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12878

Abstract

In applying Convolutional Neural Network (CNN) to computer vision tasks in the medical domain, it is necessary to have sufficient datasets to train models with high accuracy and good general ability in identifying important patterns in medical data. This overfitting is exacerbated by data imbalances, where some classes may have a smaller sample size than others, leading to biased predictive results. The purpose of this augmentation is to create variation in the training data, which in turn can help reduce overfitting and increase the ability of the model to generalize. Therefore, comparing augmentation techniques becomes essential to assess and understand the relative effectiveness of each method in addressing the challenges of overfitting and data imbalance in the medical domain. In the context of the research described, namely a comparative analysis of augmentation performance on CNN models using the ResNet101 architecture, a comparison of augmentation techniques such as Image Generator, SMOTE, and ADASYN provides insight into which technique is most suitable for improving model performance on limited medical data. By comparing these techniques' accuracy, recall, and overall performance results, research can identify the most effective and relevant techniques in addressing the challenges of complex medical datasets. This provides a valuable guide for developing better CNN models in the future and may encourage further research in developing more innovative augmentation methods suitable for the medical domain.
Comparison Analysis of C4.5 Algorithm and KNN Algorithm for Predicting Data of Non-Active Students at Prima Indonesia University Banjarnahor, Jepri; Zai , Ferman; Sirait , Janiali; Nainggolan , Dicky Wijaya; Sihombing , Nissi Grace Dian
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12879

Abstract

Education is important nowadays because universities need to improve their students' skills so they can compete in the globalization era. Education can be obtained through both formal and informal channels, and knowledge is available everywhere, especially in today's world where information tools are rapidly evolving. Inactive students are students who do not participate in a course for a maximum of two consecutive semesters. Students who are not active have the opportunity to drop out of university studies. Students who drop out of college are usually motivated by economic factors, and the cessation of the lecture process can cause inactivity and administrative costs. Therefore, this research was conducted using the C4.5 algorithm method and the K-Nearest Neighbor (KNN) algorithm to compare and predict data on inactive students at Universitas Prima Indonesia. The research continued with the data collection and data preprocessing stages, after which the data mining process was carried out to get the final results of this research. The testing process follows the process of comparing the C4.5 algorithm and the K-Nearest Neighbor (KNN) algorithm with K-fold crossing. This evaluation step is compared by considering the comparison values of the confusion matrix (precision, precision, recall). The accuracy results obtained by each algorithm provide information about the effectiveness of using these techniques in processing the specified dataset. The accuracy of the Decision Tree C4.5 algorithm is 99.12% and the K-Nearest Neighbors algorithm is 99.14%. Based on research conducted using the K-Nearest Neighbors and C4.5 algorithms to predict inactive students, the KNN algorithm is more accurate than the C4.5 algorithm.
Android-based Automatic Steak Grilling Tool Salamah, Irma; Syaniah, Yunita; Hadi, Irawan
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12880

Abstract

In an era of rapid technological development, technology is increasingly accessible and easily applied by humans. One of the significant developments is the Internet of Things (IoT), where physical devices such as sensors, equipment, and vehicles are equipped to communicate and interact via the Internet network. The application of IoT has expanded to various sectors, including culinary. In this regard, preparing and presenting food, especially steaks, becomes an exciting focus. There are multiple types of steaks, such as sirloin and tenderloin, and cooking involves various techniques, such as searing and grilling. However, suitability for maturity and risk during cooking is challenging for steak makers and connoisseurs. To overcome this, the application of IoT is needed in an automatic steak roaster to be a promising solution. This research is also equipped with real-time monitoring via an Android application. This aims to ensure proper doneness and consistent results in the steak cooking process. This research makes an automatic steak grill with a success rate of 83%, which shows that the tool's performance and functionality align with expectations. This tool also has an Android application to monitor and control the device remotely efficiently. This research gives confidence that this can be a solution that has been developed and provides significant benefits in roasting steaks with automatic monitoring and operation.
Multidimensional Knapsack 0-1 Solution With Algorithm Evolution Pso-Ga Sapoetra, Yudistira Arya; Habibi, Azwar Riza
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12887

Abstract

This paper develops the particle swarm optimization (PSO) method and uses a genetic algorithm (GA) by changing the distribution of articles in the initialization of the initial position. PSO at this time the search and speed of particles will always go to the best solution so that by narrowing the search area will be faster by updating the best position of PSO. While the Genetic algorithm plays a role to get an expanded search area for PSO solutions by utilizing crossover and mutation in GA. So that GA will expand the range of candidates for the best solution in PSO. From each of the advantages of PSO Update and GA will be combined to get Evolutionary PSO-GA (EVPGA) that can minimize error and speed up computation (itation) in finding the best solution. By using the Multidimensional Knapsack data set, the results of EVPGA get an average speed of 24.9s with an error of 1.49%.
Ontology-based Nutrition Recommender System for Stunting Patients Ramadhani, Nur Laili; Baizal, Z. K. A.
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12888

Abstract

Stunting is a growth disorder that occurs in early childhood. This condition occurs because the child has a chronic nutritional problem which triggers the child to have a height below normal. The indicator used as a standard for whether a child is stunted or not is height for age. If a child has a z-score value less than -2 standard deviations, then the child is said to suffer from stunting. Poor nutritional intake is one of the factors causing children to suffer from stunting. Most Indonesian people think that the genetics of both parents causes children to be shorter than their age, but genetics is a minimal factor that causes stunting. In 2020, Indonesia ranks second in the prevalence of stunting in Southeast Asia, according to the Asian Development Bank (ADB) report. Based on the results of the Indonesian Nutritional Status Survey (SSGI) in 2021, the stunting prevalence rate in Indonesia 2021 is 24.4%, but in 2022, the stunting prevalence rate will drop to 21.6%. One way to treat stunting in children is by providing daily nutritional intake according to the child's condition. In this study, we used the Telegram chatbot with an ontology and the rules Semantic Web Rule Language as a knowledge base. The accuracy performance of our system is 93.3% which shows that our system can provide nutritional recommendations for stunting patients.
The Optimization of CNN Algorithm Using Transfer Learning for Marine Fauna Classification Fawwaz, Insidini; Yennimar, Yennimar; Dharsinni, N P; Wijaya, Bayu Angga
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12893

Abstract

Marine fauna are all types of organisms that live in the marine environment. Marine fauna is also an important part of the marine ecosystem that has an important role in maintaining environmental balance. However, the survival of marine fauna is threatened due to activities carried out by humans, such as pollution, overfishing, industrial waste disposal into marine waters, plastic pollution and so on. Therefore, efforts are needed to monitor and protect marine fauna so that marine ecosystems can remain stable. One way to monitor marine fauna is by using classification technology. One of the technologies that can be used in marine fauna classification technology is Convolutional Neural Network (CNN). CNN is one of the classification methods that can be used to classify objects in images with a high level of accuracy. The CNN architecture models used are MobileNet, Xception, and VGG19. Furthermore, the method used to improve the performance of the CNN algorithm is the Transfer Learning method. The test results show that the MobileNet architecture model produces the highest accuracy value of 91.94% compared to Xception and VGG19 which only get an accuracy value of 87.64% and 88.42%. This shows that the MobileNet model has a more optimal performance in classifying marine fauna.
Ontology-Based Food Recommender System for Nutrition in School-Age Wulandari, Dinda Atikah; Baizal, Z. K. A.
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12895

Abstract

Nutrition plays an important role in the body and child development. Therefore, it is very important for parent to understand the nutritional needs of children to grow healthy and smart. If nutritional intake is not met, malnutrition can occur in children it interferes whit their growth and development process. The food recommendation system in this study is based on knowledge modeling. The focus of the research is to develop a recommendation system using ontology with Semantic Web Rule Language (SWRL) and form a knowledge base according to the guidelines proposed by Recommended Nutrient Intakes (RNI). Additionally, an Artificial Intelligence (AI) telegram chatbot named NutritionChildreBot was developed for this purpose. The recommended food menu is following the nutritional needs of children aged 7-9 years. The acquired knowledge base will be managed to provide information to users. The results of this research evaluation are in the form of recommendations for selecting foods that meet children’s nutritional needs based on information obtained from reliable sources.Based on this value, the calculation of precision, memory, and F_Score obtained is 97,9% of the accuracy of the results recommended by the system
Search Optimization of PIP Scholarship Recipients In Web-Based Student Data Application Using The Levenshtein Distance Algorithm Agustin, Yoga Handoko; Yosep Septiana; Arbi Yuan Aspahany
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12898

Abstract

Realizing that education is very important, the government supports every citizen to get education. One of the government programs is the Smart Indonesia Program. PlP is a scholarship designed to help school-age children from poor/vulnerable families to continue to receive education services, both through formal elementary to high school/vocational schools and non-formal pathways from package a to package c and special education. SDN II Babakanloa has not been touched by technology for processing student data. So that the student section has difficulties in recording and updating student data. Student names have unique identities and errors often occur in typing the keywords to be searched. This results in an information that is desired or sought can not be found. Therefore we need a web-based data application that can provide keyword corrections in searching for student names. This study aims to create a web-based student data application by optimizing corrections to typing keywords searched by implementing the Levenshtein Distance Algorithm and also making it easier to process and search student data. The development method used is the Rational Unified Process (RUP) with the stages of Inception, Elaboration, Construction, and Transition. Designed using the CodeIgniter Framework with the PHP and JavaScript programming languages. The application of the Levenshtein Distance Algorithm can optimize the search for student data and reduce the occurrence of search errors by School Operators. The application of the Levenshtein Distance Algorithm produces a very good accuracy rate of 94% of the results of student data correction. accordance with the expectations of the School Operator. So it shows that the application of the Levenshtein Distance Algorithm is appropriate to use in optimizing the search.
The LSTM and Bidirectional GRU Comparison for Text Classification Asrawi, Hannan; Utami, Ema; Yaqin, Ainul
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12899

Abstract

Although the phrases machine learning and AI are frequently used interchangeably and are frequently discussed together, they do not have the same meanings. While all artificial intelligence (AI) is machine learning, not all AI is machine learning, which is a key distinction. In the beginning, machine learning and natural language processing (NLP) are related since machine learning is frequently employed as a tool for NLP tasks. The advantage of NLP is that it can perform analysis, and examine a lot of data, including comments on social media accounts and hundreds of online customer evaluations. Text classification is essentially what needs to be done. This study compares Bidirectional GRU and LSTM as text classification algorithms using 20,000 newsgroup documents from 20 newsgroups from The UCI KDD Archive. After using the suggested model, we compare it to the long short-term memory and bidirectional GRU models for accuracy and validation. The results of the two comparisons show that the bidirectional GRU model performs better than the long short-term memory model. And this is a successful classification of text using a deep learning algorithm that uses a bidirectional GRU.

Filter by Year

2023 2023


Filter By Issues
All Issue Vol. 9 No. 4 (2025): Articles Research October 2025 Vol. 9 No. 3 (2025): Article Research July 2025 Vol. 9 No. 2 (2025): Research Articles April 2025 Vol. 9 No. 1 (2025): Research Article, January 2025 Vol. 8 No. 4 (2024): Article Research Volume 8 Issue 4, October 2024 Vol. 8 No. 3 (2024): Research Artikel Volume 8 Issue 3, July 2024 Vol. 8 No. 2 (2024): Article Research Volume 8 Issue 2, April 2024 Vol. 8 No. 1 (2024): Articles Research Volume 8 Issue 1, January 2024 Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023 Vol. 7 No. 3 (2023): Article Research Volume 7 Issue 3, July 2023 Vol. 7 No. 2 (2023): Research Article, Volume 7 Issue 2 April, 2023 Vol. 7 No. 1 (2023): Articles Research Volume 7 Issue 1, 2023 Vol. 6 No. 4 (2022): Article Research: Volume 6 Number 4, October 2022 Vol. 6 No. 3 (2022): Article Research Volume 6 Number 3, July 2022 Vol. 6 No. 2 (2022): Articles Research Volume 6 Issue 2, April 2022 Vol. 6 No. 1 (2021): Article Research Volume 6 Issue 1: January 2021 Vol. 5 No. 2 (2021): Article Research Volume 5 Number 2, April 2021 Vol. 5 No. 2B (2021): Article Research October 2021 Vol 4 No 2 (2020): SinkrOn Volume 4 Number 2, April 2020 Vol. 5 No. 1 (2020): Article Research, October 2020 Vol. 4 No. 1 (2019): SinkrOn Volume 4 Number 1, October 2019 Vol 3 No 2 (2019): SinkrOn Volume 3 Number 2, April 2019 Vol. 3 No. 2 (2019): SinkrOn Volume 3 Number 2, April 2019 Vol 3 No 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018 Vol. 3 No. 1 (2018): SinkrOn Volume 3 Nomor 1, Periode Oktober 2018 Vol. 2 No. 2 (2018): SinkrOn Volume 2 Nomor 2 April 2018 Vol. 2 No. 1 (2017): SinkrOn Volume 2 Nomor 1 Oktober 2017 Vol. 1 No. 2 (2017): SinkrOn Volume 1 Nomor 2 April 2017 Vol. 1 No. 1 (2016): SinkrOn Oktober Volume 1 Edisi 1 Tahun 2016 More Issue