cover
Contact Name
Yuhefizar
Contact Email
jurnal.resti@gmail.com
Phone
+628126777956
Journal Mail Official
ephi.lintau@gmail.com
Editorial Address
Politeknik Negeri Padang, Kampus Limau Manis, Padang, Indonesia.
Location
,
INDONESIA
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
ISSN : 25800760     EISSN : 25800760     DOI : https://doi.org/10.29207/resti.v2i3.606
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) dimaksudkan sebagai media kajian ilmiah hasil penelitian, pemikiran dan kajian analisis-kritis mengenai penelitian Rekayasa Sistem, Teknik Informatika/Teknologi Informasi, Manajemen Informatika dan Sistem Informasi. Sebagai bagian dari semangat menyebarluaskan ilmu pengetahuan hasil dari penelitian dan pemikiran untuk pengabdian pada Masyarakat luas dan sebagai sumber referensi akademisi di bidang Teknologi dan Informasi. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) menerima artikel ilmiah dengan lingkup penelitian pada: Rekayasa Perangkat Lunak Rekayasa Perangkat Keras Keamanan Informasi Rekayasa Sistem Sistem Pakar Sistem Penunjang Keputusan Data Mining Sistem Kecerdasan Buatan/Artificial Intelligent System Jaringan Komputer Teknik Komputer Pengolahan Citra Algoritma Genetik Sistem Informasi Business Intelligence and Knowledge Management Database System Big Data Internet of Things Enterprise Computing Machine Learning Topik kajian lainnya yang relevan
Articles 1,046 Documents
Forecasting Stock Returns Using Long Short-Term Memory (LSTM) Model Based on Inflation Data and Historical Stock Price Movements Prasetyo, Nur Faid; Witanti, Wina; Hadiana, Asep Id
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6422

Abstract

The stock market is crucial for economic growth and development, offering profit opportunities that attract investors worldwide. However, its inherent volatility necessitates the inclusion of macroeconomic indicators like inflation, which can affect stock valuation and investor behavior. This study explores predicting stock returns using a Long Short-Term Memory (LSTM) model by incorporating inflation data, historical stock price movements, and calculated returns as input features. The dataset was split into 80% for training and 20% for testing, with hyperparameter tuning conducted using the RMSprop optimizer under varying batch sizes and epoch settings. Experimental results show that the configuration using RMSprop with a batch size of 8 and 200 epochs delivered the best performance, achieving a Root Mean Squared Error (RMSE) of 0.0167 and a Mean Absolute Percentage Error (MAPE) of 25.89%. These results represent a significant improvement over alternative configurations and previous benchmarks. This study underscores the importance of including inflation as a predictive variable, enhancing the model's accuracy. The findings highlight the relevance of incorporating macroeconomic factors into stock return forecasting, providing valuable insights for investors and financial analysts seeking data-driven strategies in decision-making processes.
Enhancing Stroke Prediction with Logistic Regression and Support Vector Machine Using Oversampling Techniques Risal, Syamsul; Fajar Apriyadi; A. Sumardin; Andini Dani Achmad; Annisa Nurul Puteri
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6431

Abstract

Stroke is a significant health concern that can result in both death and disability, making the early identification of risk factors crucial. Previous studies on stroke prediction have been limited by inadequate handling of class imbalance, lack of comprehensive feature selection, and parameter optimization, with accuracy rates usually below 80%. This study compares the performance of Logistic Regression (LR) and Support Vector Machine (SVM) algorithms combined with different oversampling methods—SMOTE, Borderline-SMOTE, ADASYN, Random Over Sampling (ROS), and Random Under Sampling (RUS)—on a stroke prediction dataset. Correlation-based feature selection identified age, hypertension, and heart disease as significant predictors. GridSearchCV with 10-fold cross-validation was used for hyperparameter optimization, and performance was evaluated using precision, recall, accuracy, and ROC curves. The results showed that SVM significantly outperformed Logistic Regression across all sampling methods. SVM+ROS achieved the highest performance with perfect recall (100%), precision of 97.18%, and accuracy of 98.56% (AUC: 0.9857), whereas SVM + Borderline-SMOTE offered balanced performance with a recall of 94.99%, precision of 95.06%, and accuracy of 95.17% (AUC: 0.9512). LR + Borderline-SMOTE performed the best with an accuracy of 84.98% (AUC: 0.8503), significantly better than previous studies. This improved accuracy shows significant clinical benefits, potentially reducing missed stroke diagnoses by identifying thousands of additional at-risk patients in large-scale screening programs. Healthcare providers should consider implementing SVM with ROS in critical care settings, where potentially missed stroke cases have severe consequences. Simultaneously, SVM with Borderline-SMOTE may be more appropriate for resource-constrained environments.
Stunting Prediction Modeling in Toddlers Using a Machine Learning Approach and Model Implementation for Mobile Application Abdul Goffar, Eko; Eliviani, Rosa; Ayu Wulandhari, Lili
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6450

Abstract

Children’s health and development are critical for maintaining national productivity and independence, with stunting being a major concern. Stunting, a form of malnutrition, impairs growth and development, affecting millions of people globally, including a significant number in Indonesia. This study addresses the challenge of stunting by developing a predictive model using machine learning techniques to forecast stunting risks based on public health data. The literature review section discusses the factors that influence stunting, and these factors are used as features to build a stunting prediction model. Then the features were used to build a model with three machine learning algorithms Extreme Gradient Boosting (XGBoost), Random Forest, and K-Nearest Neighbor (KNN) to build and evaluate models that predict stunting. The models were trained and assessed using public datasets and the most effective algorithm was integrated into a mobile application for practical use. The results indicate that the XGBoost model outperforms the other models with an accuracy of 85%, making it the optimal choice for implementation in a mobile application. The next-best model is selected to be implemented through a mobile application so that users can directly use the model that has been built. This application aims to enhance early detection and intervention efforts for stunting, potentially improving child health outcomes and contributing to long-term productivity by building predictive models and implementing the models into a mobile application. This study contributes to the implementation of models built using public data for application in mobile applications.
Development of MongoDB-based Gait System with Interactive Visualization for Clinical Analysis Rizkika, Rizal Rahman; Fadhilah, Helisyah Nur; Mustaqim, Tanzilal; Ni'mah, Rifdatun
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6451

Abstract

Gait analysis is a crucial aspect of biomechanics and medical rehabilitation, used to detect movement disorders, assess therapy effectiveness, and understand human walking patterns. In Indonesia, gait research remains limited, with most data sourced from abroad, which may not reflect the characteristics of the local population. This study uses data from Vicon camera recordings that track marker movements on the subject's body and convert them into kinematic data in spatial coordinates, stored in Excel files. To support clinical applications, an efficient system is needed to manage gait data and present analysis results interactively. Therefore, a MongoDB-based gait data management system was developed due to its flexibility in handling unstructured data and scalability. The system was designed to preprocess gait data and display the results through an interactive Streamlit dashboard. The analysis involved calculating gait angle parameters, visualized in a gait cycle angle graph and analyzed statistically using mean and standard error to improve interpretation accuracy. Testing shows that the system can store data in an average of 1.52 seconds, retrieve it in 3.598 seconds, and render visualizations in 0.192 seconds, with high accuracy and only a 0.1-degree error between the input and output. This system effectively addresses the challenge of managing local gait data and supports comprehensive biomechanical analysis, enabling clinicians to make informed decisions regarding rehabilitation needs based on deviations from normal gait angle ranges.
Enhancing Areca Nut Detection and Classification Using Faster R-CNN: Addressing Dataset Limitations with Haar-like Features, Integral Image, and Anchor Box Optimization Pratama, Yovi; Rasywir, Errissya; Suyanti; Siswanto, Agus; Fachruddin
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6496

Abstract

The classification and detection of areca nuts are essential for agriculture and food processing to ensure product quality and efficiency. The manual classification of areca nuts is time-consuming and prone to human error. For a more accurate and efficient automated approach, a deep learning-based framework was proposed to address these challenges. This study optimizes the Faster R-CNN by integrating Haar-like features and integral images to enhance object detection. However, dataset limitations, including low image quality, inconsistent lighting, cluttered backgrounds, and annotation inaccuracies, affect the model performance. In addition, the small dataset size and class imbalance hindered generalization. The Faster R-CNN model was trained with and without Haar-like Features and Integral Image enhancement. Performance was evaluated based on training loss, accuracy, precision, recall, F1-score, and mean average precision (mAP). The effects of the dataset limitations on detection performance were also analyzed. The optimized model achieved better stability, with a final training loss of 0.2201, compared to 0.1101 in the baseline model. Accuracy improved from 62.60% to 73.60%, precision from 0.6161 to 0.7261, recall from 0.3094 to 0.4194, F1-score from 0.2307 to 0.3407, and mAP from 0.1168 to 0.2268. Despite these improvements, dataset constraints remain a limiting factor. While the integration of Haar-like features and integral images into faster R-CNN contributes to detection accuracy, the study also reveals that high-resolution images, precise annotations, and dataset scale significantly amplify model performance.
Minangkabau Language Stemming: A New Approach with Modified Enhanced Confix Stripping Ahda, Fadhli Almu'iini; Aji Prasetya Wibawa; Didik Dwi Prasetya; Danang Arbian Sulistyo; Andrew Nafalski
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6511

Abstract

Stemming is an essential procedure in natural language processing (NLP), which involves reducing words to their root forms by eliminating affixes, including prefixes, infixes, and suffixes. The employed method assesses the efficacy of stemming, which differs according to language. Complex affixation patterns in Indonesian and regional languages such as Minangkabau pose considerable difficulties for traditional algorithms. This research adopts the enhanced fixed-stripping method to tackle these issues by integrating linguistic characteristics unique to Minangkabau. This study has three phases: data acquisition, pseudocode development, and algorithm execution. Testing revealed an average accuracy of 77.8%, indicating the algorithm's proficiency in managing Minangkabau’s intricate morphology. Nevertheless, constraints persist, particularly with irregular affixation patterns. Possible improvements could include adding more datasets, improving the rules for handling affixes, and using machine learning to make the system more flexible and accurate. This study emphasizes the significance of customized solutions for regional languages and provides insights into the advancement of NLP in various linguistic environments. The findings underscore the progress made in processing Minangkabau text while also emphasizing the need for further research to address current issues.
Benchmarking Metaheuristic Algorithms Against Optimization Techniques for Transportation Problem in Supply Chain Management Xin Ying, Felicia Lim; Sufahani, Suliadi Firdaus
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6513

Abstract

The optimization of transportation problems plays a significant role in supply chain management (SCM), where minimizing costs and improving efficiency are mandatory. The transition from manual methods to advanced computational approaches, such as metaheuristic algorithms, enhances decision-making and consolidates operations within SCM. Malaysia's transportation system has been confronting crucial challenges, characterized by congested roadways, limited rail connectivity and inefficient port operations, which interfere with the fluidity of goods and supply chain efficiency. This highlights the critical need for optimization techniques to enhance competitiveness and efficiency in the evolving SCM landscape. The research aims to explore the application of metaheuristic algorithms, with the Modified Distribution (MODI) method as the benchmark while employing the NorthWest Corner Method (NWCM) to obtain an initial feasible solution, to evaluate their performance in optimizing transportation problems. Metaheuristic algorithms, specifically Simulated Annealing (SA) and Particle Swarm Optimization (PSO), are implemented to explore alternative near-optimal solutions and assess the performance in terms of cost accuracy and computational efficiency. The results indicate that SA achieves a deviation of 12.92% in cost accuracy compared to the optimal MODI method, making it suitable for scenarios where precision is critical, whereas PSO which is 296.92 seconds faster, is ideal for time-sensitive applications. Finally, this study encourages future studies to explore additional algorithms, external factors and broader applications for enhanced real-world relevance and scalability to accentuate the potential of metaheuristic algorithms.
A New Framework for Dynamic Educational Marketing Segmentation in Student Recruitment: Optimizing Fuzzy C-Means with Metaheuristic Techniques Bakri, Rizal; Sobirov, Bobur; Astuti, Niken Probondani; Ahmar, Ansari Saleh; Singh, Pawan Kumar
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6515

Abstract

An effective educational marketing strategy requires accurate school segmentation to enhance new student recruitment. Traditional segmentation methods such as K-means are often used, but they have limitations in capturing the flexibility of school characteristics. Fuzzy C-Means (FCM) offers a more adaptive approach by allowing each school to simultaneously have a degree of membership in several clusters. However, the performance of FCM highly depends on determining parameters such as the number of clusters (k) and the level of fuzziness (m), which are not always optimal when determined manually. This study develops a new framework for dynamic educational marketing segmentation in student recruitment by optimizing FCM using three metaheuristic techniques: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Differential Evolution (DE). Performance was evaluated using the Fuzzy Silhouette Index (FSI). The experimental results showed that DE yielded the best results with the highest FSI value (0.8023), producing eight main clusters based on the Recency, Frequency, and Monetary (RFM) model. Based on the clustering results, a personalized and adaptive marketing strategy was designed to enhance the effectiveness of student recruitment. The proposed framework enhances segmentation accuracy and supports the implementation of dynamic data-driven marketing in the context of higher education. This study also opens new directions for educational data mining research and machine-learning-based marketing strategies.
A Multi-Objective Particle Swarm Optimization Approach for Optimizing K-Means Clustering Centroids Latifa Riyana Putri, Aina; Riyono, Joko; Eni Pujiastuti, Christina; Supriyadi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6533

Abstract

The K-Means algorithm is a popular unsupervised learning method used for data clustering. However, its performance heavily depends on centroid initialization and the distribution shape of the data, making it less effective for datasets with complex or non-linear cluster structures. This study evaluates the performance of the standard K-Means algorithm and proposes a Multiobjective Particle Swarm Optimization K-Means (MOPSO+K-Means) approach to improve clustering accuracy. The evaluation was conducted on five benchmark datasets: Atom, Chainlink, EngyTime, Target, and TwoDiamonds. Experimental results show that K-Means is effective only on datasets with clearly separated clusters, such as EngyTime and TwoDiamonds, achieving accuracies of 95.6% and 100%, respectively. In contrast, MOPSO+K-Means achieved a substantial accuracy improvement on the complex Target dataset, increasing from 0.26% to 59.2%. The TwoDiamonds dataset achieved the most desirable trade-off: it had the lowest SSW (1323.32), relatively high SSB (2863.34), and lowest standard deviation values, indicating compact clusters, good separation, and high consistency across runs. These findings highlight the potential of swarm-based optimization to achieve consistent and accurate clustering results on datasets with varying structural complexity.
Automatic Classification of Multilanguage Scientific Papers to the Sustainable Development Goals Using Transfer Learning Suadaa, Lya Hulliyyatus; Monika, Anugerah Karta; Putri, Berliana Sugiarti; Rimawati, Yeni
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 3 (2025): June 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i3.6560

Abstract

The classification of scientific papers according to their relevance to Sustainable Development Goals (SDGs) is a critical task in identifying the research development status of goals. However, with the growing volume of scientific literature published worldwide in multiple languages, manual categorization of these papers has become increasingly complex and time-consuming. Furthermore, the need for a comprehensive multilingual dataset to train effective models complicates the task, as obtaining such datasets for various languages is resource intensive. This study proposes a solution to this problem by leveraging transfer learning techniques to automatically classify scientific papers into SDG labels. By fine-tuning pretrained multilingual models mBERT on SDG publication datasets in a multilabel approach, we demonstrate that transfer learning can significantly improve classification performance, even with limited labelled data, compared to SVM. Our approach enables the effective processing of scientific papers in different languages and facilitates the seamless mapping of research to the relevance of SDGs, the four pillars of SDGs, and the 17 goals of SDGs. The proposed method addresses the scalability issue in SDG classification and lays the groundwork for more efficient systems that can handle the multilingual nature of modern scientific publications.

Page 96 of 105 | Total Record : 1046