cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Characteristic and Physicochemical Properties of Peat Soil Stabilized with Sodium Hydroxide (NaOH) Habib Musa Mohamad; Mohd Fahmie Izzudin Sharudin; Adriana Erica Amaludin; Siti Nor Farhana Zakaria
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-09

Abstract

Peat in various phases of decomposition has poor shear strength and high compressive deformation. For this research study, it will focus on stabilizing peat soil using NaOH. There are two main tests that were conducted in this research study, which are index property testing and the compaction test. For index property testing, there were six (6) experiments conducted to study the index properties of disturbed peat soil, which are moisture content, fiber content, organic content, liquid limit, pH, and specific gravity. Then, for the compaction test, a 4.5kg rammer was used to determine the best mixture of stabilizer blended with different volumes of 5%, 7%, and 9% stabilizer. The desired outcome of this study is to stimulate further research into the use of the chemical NaOH as a peat soil stabilizer for improved soil usage. 7% and 9% of NaOH only have a slightly different percentage, and it can be concluded that this was the optimum percentage of NaOH as a chemical stabilizer for peat soil. It can be seen clearly that 5% is the higher dry density with a lesser moisture content of the peat. When the percentage of NaOH was increased, the graph pattern also changed. NaOH has been observed as an alteration agent for peat soil dry density. It can be seen clearly that 5% NaOH is the higher dry density of the peat with the lesser moisture content and is suitable as a peat soil stabilizer. The increment of oxygen content recorded changes from 13.3% to 23%, while the sodium (Na) content decreased significantly with the increment of oxygen (O). Sodium content decreased from 8.7% for untreated specimens to 4.5% and 5.5% when peat was treated with NaOH, with 5% of NaOH and 9% of NaOH. Doi: 10.28991/CEJ-2023-09-09-09 Full Text: PDF
Solar and Human Activity Impact on High and Low Land River Flows Arban Berisha
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-06

Abstract

In the last two decades, in the Kosovo area, we have seen extraordinary climate changes and their consequences, such as flash floods, empty reservoirs, and forest burning. So, the objective of this article is to analyze the main drivers of climate change due to global warming, like Temperatures, Precipitation, River flows (TPQ), Human Activity (HA) on one side and the extraterritorial factor of sunspot number NS on the other side. The methodology of the approach is statistical, with trend detection, comparison, and calculation of significance for each factor. There are data in state institutions, daily and monthly, for TPQ from 1963–2022 and Sunspots from 1954–2006. Three Highland HL, two Lowland LL rivers, and two Temperature and Precipitation Meteorological stations were considered for analysis. For river LL1, the data needed to be completed, and correlation, calibration, and validation methods were applied to fill the gaps. Results indicate that sunspot numbers show a decrease of -18% from the average value, Temperature +24%, Precipitation +5%, HL1 flow -31%, HL2 -0.5%, HL3 -7.5%, LL1 -22%, and LL2 -13%. The significance of the impact of Sunspots on the air temperature approximates 75%, while the impact of human activity approximates 25%. This will be an excellent contribution to future water resource management plans. Doi: 10.28991/CEJ-2023-09-07-06 Full Text: PDF
Structural Strengthening of Insufficiently Designed Reinforced Concrete T-Beams using CFRP Composites Hasan Ehssan Alobaidi; Alaa Hussein Al-Zuhairi
Civil Engineering Journal Vol 9, No 8 (2023): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-08-05

Abstract

This study aims to compare the response of reinforced concrete (RC) T-beams strengthened with carbon fibre-reinforced polymer (CFRP) composite with that of non-strengthened control beams when subjected to monotonic two-point loading until failure for flexural once and shear again. The experimental programme tested eight RC T-beams, which included two reference beams without strengthening and six strengthened beams. The eight beams were divided into two main groups according to strengthening (flexural and shear). Experimental analysis was performed to study the effect of the CFRP laminate width in the flexural group and the spacing of CFRP U-wrap sheets in the shear group on the ultimate load capacity, load-strain relationship, and load-deflection relationship. Results show that increasing the width of the CFRP laminate in the flexural group improves the ultimate strengths to approximately 9.5%, 35%, and 41% for beams with CFRP laminate widths of 50, 100, and 150 mm, respectively, compared with the reference non-strengthened beam. The stiffness of the beams increases in direct proportion to the width of the CFRP laminate. In the meantime, decreasing the spacing of the CFRP laminate in the shear group increases the ultimate strengths to approximately 13.2%, 17.7%, and 23.5% for beams with CFRP U-wrap sheet spacings of 166, 125, and 100 mm, respectively, compared with the reference non-strengthened beam. Therefore, the spacing of the CFRP sheet is inversely proportional to the stiffness of the beam. Doi: 10.28991/CEJ-2023-09-08-05 Full Text: PDF
An Intelligent Approach for Predicting Mechanical Properties of High-Volume Fly Ash (HVFA) Concrete Musa Adamu; A. Batur Çolak; Ibrahim K. Umar; Yasser E. Ibrahim; Mukhtar F. Hamza
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-04

Abstract

Plastic waste (PW) is a major soild waste, which its generation continues to increase globally year in and year out. Proper management of the PW is still a challenge due to its non-biodegradable nature. One of the most convenient ways of managing plastic waste is by using it in concrete as a partial substitute for natural aggregate. However, the main shortcomings of adding plastic waste to concrete are a reduction in strength and durability. Hence, to reduce the undesirable impact of the PW in concrete, highly reactive additives are normally added. In this research, 240 experimental datasets were used to train an artificial neural network (ANN) model using Levenberg Marquadt algorithms for the prediction of the mechanical properties and durability of high-volume fly ash (HVFA) concrete containing fly ash and PW as partial substitutes for cement and coarse aggregate, respectively, and graphene nanoplatlets (GNP) as additives to cementitious materials. The optimized model structure has five input parameters, 17 hidden neurons, and one output layer for each of the physical parameters. The results were analyzed graphically and statistically. The obtained results revealed that the generated network model can forecast with deviations less than 0.48%. The efficiency of the ANN model in predicting concrete properties was compared with that of the SVR (support vector regression) and SWLR (stepwise regression) models. The ANN outperformed SVR and SWLR for all the models by up to 6% and 74% for SVR and SWLR, respectively, in the confirmation stage. The graphical analysis of the results further demonstrates the higher prediction ability of the ANN. Doi: 10.28991/CEJ-2023-09-09-04 Full Text: PDF
Four-Face Heated Uniaxial Reinforced Concrete Columns Interaction Charts Mohammed S. Al-Ansari; Muhammad S. Afzal
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-01

Abstract

This paper presents an analytical method for generating the interaction diagrams of uniaxially reinforced concrete (RC) columns that are subjected to four-face heating. Twenty-one (21) specimens obtained from previous case studies that were subjected to four-face heating (with different fire test times ranging from 63 to 356 fire minutes) are used to validate the proposed uniaxial interaction charts. The results obtained from the case studies and from the proposed charts are also compared with the finite element software (FIN EC). The 500°C isotherm as well as the zone method are used in the computer software program to find the required load capacities. The proposed method's values fall within the range of values obtained from laboratory tests and computer software, which suggests its validity. Also, the zone method in FIN-EC software is reliable for evaluating load-bearing capacity, while the 500°C method is useful in situations with shorter fire times. The results obtained provide a valuable tool for designing and evaluating structures that may be exposed to fire. Nonetheless, the study is restricted by its concentration on a particular type of column under four-face heating, which may reduce its relevance to other types of structures and heating situations. Doi: 10.28991/CEJ-2023-09-07-01 Full Text: PDF
Experimental and Numerical Parametric Studies on Inclined Skirted Foundation Resting on Sand Tamer Al-Shyoukhi; Mahmoud Elmeligy; Ayman I. Altahrany
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-017

Abstract

Skirted foundation behavior is enhanced due to the increase in skirt angle. The bearing capacity of the inclined skirted foundations resting on sandy soil is influenced by the soil parameters and skirting systems. Finite element analyses were carried out using Plaxis-3D software to find out the influence of the relative density, the internal friction angle of the supported soil, and the additional skirts on the bearing capacity of the inclined skirted foundations. The experimental work on a small physical scale was also carried out to support the numerical findings, which give an acceptable agreement. The findings revealed that the increase in relative density resulted in a significant increase in the bearing capacity of the inclined skirted foundation. In the same way, as the internal friction angle increases, the bearing capacity is affected by this increase, which improves the bearing capacity value. The effect of the additional skirts on the bearing capacity is observed to be neglected, and, in some cases, it causes a negative effect. The findings of this study contribute to a greater comprehension of the behavior of inclined skirted foundations and can assist in the future design of more efficient and effective foundation systems. Doi: 10.28991/CEJ-2023-09-07-017 Full Text: PDF
The Effects of Rhythm on Building Openings and Fenestrations on Airflow Pattern in Tropical Low-Rise Residential Buildings Peter I. Oforji; Emeka J. Mba; Francis O. Okeke
Civil Engineering Journal Vol 9, No 8 (2023): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-08-016

Abstract

Effective passive airflow in low-rise residential buildings in hot-humid environment is crucial to maintaining good indoor thermal comfort for occupants. However, investigation of effects of the rhythm of window openings on achieving a passive airflow pattern in such buildings in the tropical climate of sub-Saharan Nigeria have been rarely studied. Therefore, this research aimed to evaluate the effects of the rhythm of window openings on passive airflow patterns for indoor thermal comfort in low-rise residential buildings in the hot-humid environment of Obosi, Nigeria. It involved experimental research using the Anemometer TA465 instrument for measuring wind velocity, relative humidity, and temperature of the purposively designated buildings in the three layouts of the study area for both wet and dry seasons. Employing the Yamane statistical formula, a sample size of 433 was obtained, and questionnaires were administered to occupants of the studied buildings and analyzed using categorical Regression Analysis (CATREG). The regression analysis showed that p=0.000, i.e. p<0.05 indicating that there was a significant relationship between the type and sizes of windows (elements used in measuring rhythm) and the intensity or force of breeze (a measure of passive airflow pattern). Further analysis of the data involved the use of Autodesk CFD 2018 (Computational Fluid Dynamics) for building wind flow simulations. The result showed variations in temperature levels (indications of differences in indoor thermal comfort) of various indoor spaces of the investigated designated floors and buildings, especially ground floors and the top-most floors of the buildings. The study underscored the need to use architectural rhythm design strategies to create a positive impact on airflow patterns in low-rise buildings, especially in densely built-up urban areas. The results of this study are instructive in noting that in order to attain passive airflow in buildings in the face of challenge of land restrictions, vertical stacking of building floors could be used once an adequate rhythm of window openings is adopted. Doi: 10.28991/CEJ-2023-09-08-016 Full Text: PDF
Effect of Openings on the Torsional Behavior of SCC Box Beams Under Monotonic and Repeated Loading Haneen Maad Mahdi; Rafaa M. Abbas
Civil Engineering Journal Vol 9, No 9 (2023): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-09-015

Abstract

Repeated Torsional loading occurs in many concrete structures, such as offshore structures, freeways, multistory parking garages, and other structures; however, repeated torsional loading is still poorly understood. This study aims to investigate the effect of openings on the ultimate and cracking torques, angle of twist, and modes of failure of self-compacted R.C. box beams under monotonic and repeated loading. Two groups of eight half-scale box beams with different numbers of circular openings in the web with a diameter of about 30% of the hollow box dimension were investigated. The first group (I) included four beams: one was the control box beam without openings, whereas the rest of the beams were hollow with one, two, or three openings in the web tested under monotonic loading. The second group (II) consisted of the same details as the first one tested under repeated loading. The range of the repeated loading was about 30% and 60% of the ultimate load of the monotonic tests. The study showed that the cracking and ultimate torques and the angle of twist of the tested beams were significantly reduced due to openings in the web. Results revealed a more pronounced effect for monotonic loading, with a maximum reduction of 20% and 26.8% in cracking and ultimate torsional strength, respectively, compared to monotonic loading. Moreover, results revealed that repeated loading causes inelastic deformations in proportion to the number of loading cycles. Doi: 10.28991/CEJ-2023-09-09-015 Full Text: PDF
Numerical Analysis and Parametric Study on Multiple Degrees-of-Freedom Frames George U. Alaneme; Alireza Bahrami; Uzoma Ibe Iro; Nakkeeran Ganasen; Obeten N. Otu; Richard C. Udeala; Blessing O. Ifebude; Emmanuel A. Onwusereaka
Civil Engineering Journal Vol 9, No 7 (2023): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-07-012

Abstract

The design of multiple degrees-of-freedom frames is critical in civil engineering, as these structures are commonly used in various applications such as buildings, bridges, and industrial structures. In this study, a six-degrees-of-freedom beam-column element stiffness matrix was formulated by superposition of beam and truss elements stiffness matrices and was adapted to statically analyze indeterminate frame structures. The development of a numerical model for the frame structures was achieved using the finite element method in the current study. Also, the investigation of the effects of various parameters such as frame geometries, material properties, and loading conditions was conducted on the internal forces developed in the frame structures. Three different parametric study cases that presented the frame structures with varying geometries and loading conditions were analyzed utilizing this matrix approach for the sake of emphasis and to evaluate the flexibility and adequacy of this formula to analyze the indeterminate frames using the MATLAB software. The analysis method comprised the derivation of the system displacements employing the relationships between the stiffness matrix and fixed end forces as the force vector and taking the attained displacements, which would be transformed to the local coordinates to obtain the member forces. The computed results from the element stiffness matrix approach were further statistically compared with the results achieved from the finite element software (SAP2000) applying the analysis of variance (ANOVA). The statistical results showed a P-value > 0.05, which indicated a good correlation between the compared results and adequate performance for the derived beam-column element matrix formula method. Doi: 10.28991/CEJ-2023-09-07-012 Full Text: PDF
Optimizing the Flexural Behavior of Bamboo Reinforced Concrete Beams Containing Cassava Peel Ash using Response Surface Methodology Temitope F. Awolusi; Oluwasegun J. Aladegboye; Olusola E. Babalola; Emmanuel K. Ayo; Marc Azab; Ahmed F. Deifalla
Civil Engineering Journal Vol 9, No 8 (2023): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-08-011

Abstract

The growing concern to reduce global warming has necessitated the use of more eco-friendly materials in construction. The study is focused on the utilization of cassava peel ash as supplementary cementitious material and bamboo as reinforcement in concrete beams. The response surface methodology approach was explored to determine the effect of simultaneously varying the cassava peel ash content, bamboo size, beam length, and beam depth on the flexural strength and strain of beams. An analysis of variance was carried out on experimentally obtained results to determine the accuracy of the obtained models and the contributions made by the linear interaction and quadratic terms on flexural strength and flexural strain. The coefficient of determination obtained for RSM models showed a good correlation between all predicted and experimentally obtained results. The optimum conditions obtained for bamboo-reinforced concrete containing cassava peel ash were 3% cassava peel ash, 16 mm bamboo diameter, 500 mm beam length, and 150 mm beam depth. The predicted flexural strengths were 11.85, 14.34, and 14.95 N/mm2 and flexural strains of 0.64, 0.67, and 0.91 for 28 days, 56 days, and 90 days, respectively. To validate the model prediction, a laboratory experiment was conducted using the optimum mix design proportion. From the results obtained, it was observed that the experimental results were close to those predicted by the models. These models can be efficiently used for simulating the flexural behavior of bamboo-reinforced concrete beams. Doi: 10.28991/CEJ-2023-09-08-011 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue