cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Experimental investigations: Reinforced Concrete Beams Bending Strength with Brine Wastewater in Short Age Husein A. Alzgool; Ahmad M. Shawashreh; Lujain A. Albtoosh; Basil A. Abusamra
Civil Engineering Journal Vol 10, No 1 (2024): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-01-010

Abstract

The scarcity of waste in some regions has led to the contemplation of other approaches to providing potable water for human use. In the present research, it is proposed that a portion of the brine wastewater be recycled for potable water purposes through its incorporation into concrete and reinforced concrete compositions. The researchers performed an extensive empirical investigation to examine the impact of incorporating brine wastewater into the concrete mixture on the shear strength, bending stress, and compressive strength of the material. A total of seventy-two beams, each measuring 500 mm in length, 100 mm in width, and 100 mm in depth, were observed. A total of twelve beams were designated as control specimens, while an additional sixty beams were subjected to immersion in brine wastewater at varying concentrations of 2.5, 5, 7.5, 10, and 15%. The beams were reinforced using two longitudinal steel bars with a diameter of 8 millimeters in the tension zone and 6 millimeters in the compression zone. The stirrups included in the study were also measured to have a diameter of 4 mm. The samples were examined at intervals of seven, fourteen, twenty-one, and twenty-eight days. Based on the findings of this study and other relevant studies, it was determined that the use of 10% fresh water as a substitute for brine wastewater yielded the most optimal outcomes. The results obtained after a duration of 28 days indicate a notable increase in both the compressive and bending strengths of the concrete samples, with improvements of around 22% and 2.6% seen in comparison to the reference specimens. The impact of brine wastewater on the corrosion of reinforcing steel in reinforced concrete was investigated. The empirical findings indicated that the introduction of brine wastewater at a concentration of 10% to the concrete constituents did not provide any discernible repercussions over a period of 65 days. Doi: 10.28991/CEJ-2024-010-01-010 Full Text: PDF
Enhancing the Properties of Steel Fiber Self-Compacting NaOH-Based Geopolymer Concrete with the Addition of Metakaolin Samy Elbialy; Ahmed A. El-Latief; Hebah M. Al-Jabali; Hebatallah A. Elsayed; Shymaa M. M. Shawky
Civil Engineering Journal Vol 10, No 7 (2024): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-07-011

Abstract

There is a demand for innovative construction materials that offer enhanced mechanical characteristics while also being cost-effective and environmentally friendly. This paper examines the fresh properties and mechanical properties of geopolymerized self-compacting concrete (SCC) reinforced with steel fibers, containing 0–100% metakaolin (MK) by mass, as an eco-friendly substitute for Portland cement. SCC combinations included one or more waste cementitious materials (WCMs), such as metakaolin (MK), NaOH as an alkaline activity, and double-hook end steel fibers. For every NaOH geopolymer SCC blend, the mechanical characteristics (compressive strength, splitting tensile strength, flexural strength), as well as the new properties (lump flow, V-Funnel, L-box test), were read up. The findings indicate that combining metakaolin and steel fibers reduces the flowability of NaOH-based geopolymer SCC. On the other hand, incorporating MK and steel fibers enhances the compressive and flexural strength of NaOH-based geopolymer SCC with 25% metakaolin and 0.3% steel fiber. In contrast to the fiber-reinforced NaOH-based geopolymer SCC samples, which could transfer a sizable load even when the crack mouth opening deflection rose at flexural strength, the fiber-free SCC samples showed a brittle and abrupt fracture. The findings showed that the addition of NaOH as an alkaline activator, MK, and steel fiber had a negative impact on the fresh state properties; however, their combined use greatly enhanced the bond strength and flexural performance of the NaOH geopolymer SCC specimens. Doi: 10.28991/CEJ-2024-010-07-011 Full Text: PDF
Effect of Different Ceramic Waste Powder on Characteristics of Fly Ash-Based Geopolymer Bernardinus Herbudiman; Subari Subari; Bactiar Nugraha; Indah Pratiwi; Asnan Rinovian; Euneke Widyaningsih; Evi Dwi Yanti; Bagus D. Erlangga; Jakah Jakah; Seto Roseno
Civil Engineering Journal Vol 10, No 2 (2024): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-02-06

Abstract

The escalating demand for construction materials driven by rapid population growth has heightened the reliance on cement binders, resulting in increased CO2 emissions from the cement industry. Geopolymers, considered environmentally friendly alternatives, have been explored in various studies to address this challenge. This research specifically investigates the impact of different types of ceramic waste bricks (BT), floor tiles (FT), roof tiles (RT), and sanitary ceramics (ST) on the physical and mechanical properties of fly ash-based geopolymer mortar. To provide a comprehensive understanding, this research examines the compressive strength, mineral phase, chemical bonds, and microscopic evolution of fly ash geopolymer mortar incorporating varying proportions of each ceramic waste type (25% and 50% fly ash replacement). A consistent mixture of Na2SiO3and NaOH was used for the alkaline solution in all formulations. The curing process was carried out at room temperature for 7, 14, and 28 days prior to the compressive strength test. The result revealed that the inclusion of 25% BT experienced higher strength compared to the control sample after 14 days, but the strength became comparable after 28 days at 40.24 MPa. A reduction in strength was evident with the addition of other ceramic components. Moreover, higher incorporation of CWP correlated with a faster setting time for fresh geopolymers. This was also linked to the degree of gel formation, as indicated in the microstructure images. The emergence of plagioclase minerals was evident in all formulations of the geopolymer products under XRD analysis, while the bond of the geopolymer signature, Si-O-T (T = Si or Al), was identified from the infrared spectra. The microstructure of the binder showed a geopolymer matrix alongside unreacted fly ash particles. Overall, CWP replacement up to 25% can be potential in fly ash geopolymer without sacrificing significant strength loss and remaining in the range of normal strength mortar. Doi: 10.28991/CEJ-2024-010-02-06 Full Text: PDF
Effect of Non-Class Fly Ash on Strength Properties of Concrete Anjeza Alaj; Nexhmi Krasniqi; Tatsuya Numao
Civil Engineering Journal Vol 10, No 3 (2024): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-03-02

Abstract

Developing of green construction and reducing CO2emissions in the environment is a priority for industry in the coming years. Recycling fly ash in the concrete industry is a well-known way to reduce environmental impact. Aside from this benefit, there are numerous other positive effects of incorporating fly ash into concrete; however, in this research, the objective is to replace cement with a different percentage of non-class fly ash with high CaO, more than 42%. The analyzed variables are non-class fly ash properties, the effect of fly ash presence on the main properties of concrete and examining the optimum of non-class fly ash in ordinary concrete C-25/30 and high-performance concrete C-50/60. All investigations took place in the laboratory by producing 24 different mix designs and more than 1000 specimens to examine: consistency, setting time, shrinkage, and compressive strength in the short and long terms of curing. Recycling industrial waste in new construction, especially fly ash because of its non-uniform properties, still has some obstacles and is not a practical issue, but the future must be environmentally friendly, and this research proves that the objective of producing sustainable ordinary and high-performance concrete was achieved by replacing 40% of cement with non-class high CaO content fly ash. Doi: 10.28991/CEJ-2024-010-03-02 Full Text: PDF
Integrating Technology and Heritage Design for Climate Resilient Courtyard House in Arid Region Afaq H. Chohan; Jihad Awad; Muhammad A. Ismail; Mohammad S. Arar
Civil Engineering Journal Vol 10, No 3 (2024): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-03-018

Abstract

This research has investigated the sustainability and climate resilience of courtyard houses of adobe architecture in the UAE. It analyzed design effectiveness in terms of power consumption, CO2 emissions, thermal comfort, and daylight use, employing simulations to assess building structures and construction systems. Adopting a three-phase mixed-methods approach, the study began with a literature review on courtyard house design, construction, and environmental performance, emphasizing sustainable design and passive ventilation. The second phase involved a case study of a UAE courtyard house (Al Midfa), including site visits, interviews, and energy consumption and CO2 emission data collection. The final phase used building energy simulation software to model energy performance and evaluate passive ventilation's role in reducing energy consumption and CO2 emissions, with simulation results validated against real-world data. Advanced Sefaira simulations with the Energy Plus Engine identified one out of seven modified models (M5) as exceptionally thermally efficient, influencing the architectural design of the Al Midfa house. To transform the Al Midfa house into a sustainable climate-resistant structure, the research suggested retrofitting with new glazing and insulation on the inside of external walls and on the roof surface at a combined U-value of 0.4 W/m2to enhance energy efficiency without altering the exterior. A notable innovation was the use of injected cellulose insulation in wall systems, combining efficient insulation with architectural aesthetics, signifying a shift towards energy-efficient interior modifications. The study's findings contribute to the evolution of traditional house designs toward climate change resilience and a sustainable future. Doi: 10.28991/CEJ-2024-010-03-018 Full Text: PDF
Thrust Vector Control within a Geometric Sphere, and the Use of Euler's Tips to Create Jet Technology Yuri A. Sazonov; Mikhail A. Mokhov; Inna V. Gryaznova; Victoria V. Voronova; Khoren A. Tumanyan; Egor I. Konyushkov
Civil Engineering Journal Vol 9, No 10 (2023): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-10-011

Abstract

This study aims to study the issues of choosing promising directions for the development of jet technology with the creation of energy-conserving technologies. The purpose of this article is to study the issues of choosing promising directions for the development of jet technology with the creation of energy-saving. Methodological approaches have been developed for solving inventive problems within the framework of training modern designers-inventors. A new patentable jet unit has been developed and presented, which makes it possible to control the thrust vector within a complete geometric sphere (when the thrust vector is capable of deviating to any angle ranging from +180° to -180°). For the first time, demonstration versions of a nozzle apparatus capable of realizing such flow reversals through annular channels are shown. The results of computer modeling of nozzle devices are focused on energy, production, and processing of hydrocarbons when distributing energy flows at process facilities. The individual results of the ongoing work can also be used in other industries, for instance, in the creation of small-sized high-speed unmanned vehicles for search and rescue operations. Proposals have been prepared to improve the methodology for solving inventive problems as part of the development of Leonard Euler’s ideas. Doi: 10.28991/CEJ-2023-09-10-011 Full Text: PDF
Monitoring Physiological State of Drivers Using In-Vehicle Sensing of Non-Invasive Signal Siti Fatimah Abdul Razak; Sharifah N. M. Sayed Ismail; Bryan Hii Ben Bin; Sumendra Yogarayan; Mohd Fikri Azli Abdullah; Noor Hisham Kamis
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-014

Abstract

Eighty percent of traffic accidents are caused by human error, called hypo vigilance, stemming from drowsiness, stress, or distraction while driving. This poses a significant threat to road safety. An electrocardiogram (ECG) is often used to monitor drivers' health. Thus, enhancing vehicles with Internet of Things (IoT) sensors and local analytical databases becomes crucial for real-time detection and transmission of relevant health data to avoid things that compromise road traffic safety. This study introduces a cost-effective in-vehicle ECG sensing prototype using an AD8232 sensor integrated with an Arduino Uno and an AD8232 Wi-Fi module placed on the steering wheel to monitor the driver's heart signal while driving. Short-term heart rate variability (HRV) features were computed through Python from the acquired ECG data, and supervised machine learning techniques such as AdaBoost, Random Forest, Naïve Bayes, and Support Vector Machine (SVM) classified the features into normal and abnormal classes. Naive Bayes exhibited the highest accuracy (90.91%) and F1 score (85.71%), surpassing Random Forest's lower accuracy (63.64%) and F1 score (50.00%). These findings indicate the prototype's potential as a valuable tool for ensuring safe and efficient driving, proposing integration into standard vehicle safety systems for enhanced road traffic safety. Doi: 10.28991/CEJ-2024-010-04-014 Full Text: PDF
Investigation of Parameters Affecting Rotational Behavior of Cold-Formed Steel Connection Krittiya Pawanithiboworn; Tanyada Pannachet; Maetee Boonpichetvong
Civil Engineering Journal Vol 9, No 11 (2023): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-11-08

Abstract

This study aims to understand the behavior of connection, which holds an important key to efficient designs of the cold-formed steel structure. The focus is on examining parameters that affect the rotational stiffness and behavior of the cold-formed steel connection made of single-lipped channel sections with a bolt and gusset plate system. The numerical study has been conducted using component-based finite element analysis, with the studied parameters including bolt diameters, number of bolts in the group, size of the bolt group, thickness of the cold-formed steel cross-section, and thickness of the connecting plate. The effect of the variables is evaluated and explained by comparison. The result of the study reveals that the rotational behavior of the connection depends on the details of the assembly. For the given base connection, the parameters that give the greatest effect on the rotation stiffness and the moment capacity are the number of bolts and the bolt diameters, whereas the parameter that provides the least effect is the bolt spacing. On the other hand, the bolt group size is the most influential parameter for the member connection. For both types of connections, the thickness of the cold-formed steel section and the thickness of the gusset plate have shown limited effect on stiffness and strength. Using different variables in assembling the connection can also lead to different failure types, either bolt failure or excessive bolt hole deformation, which leads to plate failure. Doi: 10.28991/CEJ-2023-09-11-08 Full Text: PDF
Effect of Steel Fiber on Plastic Hinge Length of Concrete Columns: Buckingham Theory Application . Tavio; Bambang Sabariman; Slamet Widodo
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-03

Abstract

The accuracy of designing the performance of concrete structures nowadays not only depends on the use of standard materials (cement, sand, and gravel) for certain concrete strengths but also on the accuracy of using additional materials for concrete, such as steel fiber. The use of steel fiber not only can improve the performance of concrete structures to behave in a ductile manner but can also form plastic hinges according to design purposes. The design of the axial load of Pa=0.121.Ag.f'c is based on the prediction of the column’s axial capacity. The columns were designed to behave in a flexural manner. As predicted, the lengths of the plastic hinges were found not too long. Controlling the length of plastic hinges in the design of structural concrete members is necessary to avoid excessive displacements. The control is mainly related to the prediction of the plastic hinge length. Thus, in this case, a plastic hinge length formula is required. In the study, the length of the plastic hinges of columns, which are confined with square stirrups and reinforced with steel fiber with Vf = 0%, 0.5%, 1%, 1.5%, and 2%, is proposed. This plastic hinge length formula is proposed after all column test specimens have met the displacement ductility requirement of mD>4, meaning that all test specimens are defined as very ductile. Doi: 10.28991/CEJ-2024-010-05-03 Full Text: PDF
Modeling Finned Thermal Collector Construction Nanofluid-based Al2O3 to Enhance Photovoltaic Performance Singgih D. Prasetyo; Eko P. Budiana; Aditya R. Prabowo; Zainal Arifin
Civil Engineering Journal Vol 9, No 12 (2023): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-12-03

Abstract

Extensive research has been conducted to address the issue of the reduced efficiency of solar photovoltaic (PV) cells at high temperatures. To address this problem, a hybrid cooling system has been developed. This system uses a thermal collector to convert waste heat into reusable heat. Selecting the best configuration and operational parameters for the collector is crucial for maximizing system performance. To achieve this, we conducted computational fluid dynamics (CFD) modeling using ANSYS. Various factors affecting the cooling of PV solar cells were analyzed, including the collector design, mass flow rate, and concentration of the Al2O3 nanofluids. Results showed that the 12S finned thermal collector system exhibits the lowest temperature for PV solar cells, at approximately 29.654 oC. The electrical efficiency of PV solar cells is influenced by the concentration of Al2O3 nanofluids. We found that the 12S finned collector system with 1% water/Al2O3 nanofluid achieved the highest efficiency (approximately 11.749%) at a flow rate of 0.09 kg/s. The addition of finned collectors affects efficiency and variations in fluid mass flow rates, and there is no relation between the connector type and different Al2O3nanofluid concentrations. In other words, the cooling system can be optimized to enhance the efficiency of the PV solar cells under high-temperature conditions. Doi: 10.28991/CEJ-2023-09-12-03 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue