cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Strength Assessment of Stiffened-Panel Structures against Buckling Loads: FE Benchmarking and Analysis M. Sholikhah; R. Ridwan; A. R. Prabowo; T. Ghanbari-Ghazijahani; I. Yaningsih; N. Muhayat; D. D. D. P. Tjahjana; R. Adiputra; J. M. Sohn
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-03

Abstract

This research endeavors to examine the effect of stiffener shapes on the structural capacity of stiffened-plate structures, specifically focusing on Tee (T), Angle (L), and Flat (I) stiffened plates. The primary objectives are threefold: firstly, to quantify the critical load values during the buckling phenomenon for T, L, and I stiffened plates; secondly, to assess model deformation upon failure; and thirdly, to investigate whether the buckling behavior of T, L, and I stiffened plates correlates with distinct failure patterns. Employing numerical simulation through the finite element method, this study sheds light on previously unexplored aspects of structural behavior. The findings indicate that angle stiffeners exhibit superior load-bearing performance compared to flat bars. Notably, the research reveals a substantial increase in maximum compressive load by at least 15.90% with Tee bar and 8.25% with angle bar stiffeners when the stiffened panels undergo a 5 mm displacement, presenting a potential avenue for structural enhancement. Additionally, the study demonstrates that T bars outperform in terms of resisting buckling. Noteworthy is the novel approach of examining the combined effect of transverse frame, longitudinal frame, and hull girder under buckling scenarios, a facet not explored in previous research. Furthermore, the utilization of steel S355JR-EN10210 as a material introduces a unique dimension not previously considered in these scenarios. Doi: 10.28991/CEJ-2024-010-04-03 Full Text: PDF
Interpretation Methods for Seismic Downhole Test in Inclined Boreholes Pedro Bautista; Zenon Aguilar
Civil Engineering Journal Vol 9, No 10 (2023): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-10-016

Abstract

Geotechnical investigations often involve inclined boreholes, which can be used for downhole (DH) seismic surveys. However, as there is no interpretation method for downhole tests in inclined boreholes (IDH), this study proposes alternative interpretation methods based on the direct method (DM), interval method (IM), modified interval method (MIM), and refracted ray path method (RRM). We have named the proposed methods, adding an I to the original name to indicate that they are performed in an inclined well, i.e., DMI, IMI, MIMI, and RRMI. To analyze the applicability of the proposed methods, eight simple models with horizontal layers and four 2D models were used to obtain the P- and S-wave velocity profiles. Among all the proposed methods, the RRMI method showed the best fit between the calculated S-wave velocity (Vs) profile and the real models, providing good reliability. To test the equations and hypotheses, new interpretation steps were developed based on Snell's law and a modification of the numerical bisection method, which showed that the error increased slightly as the dip angle of the well decreased. The next step was to test the accuracy of the RRMI method in the field and develop downhole test processing software for vertical and inclined boreholes. Doi: 10.28991/CEJ-2023-09-10-016 Full Text: PDF
Seismic Resilience of Steel-Braced Frames Incorporating Steel Slit Dampers: A Review and Comparative Numerical Analysis Zaid A. Al-Sadoon; M. Almohammad-albakkar
Civil Engineering Journal Vol 10, No 4 (2024): April
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-04-019

Abstract

Steel dampers, specifically steel slit dampers (SSDs), are crucial for enhancing the seismic resilience of buildings by absorbing energy and mitigating damage. SSDs are celebrated for their ability to produce stable hysteretic behavior, owing to the inelastic deformation of their strips, alongside benefits such as lightness, ease of manufacture, and straightforward post-earthquake replacement. This research extensively examines SSD applications, design principles, and innovations in their modeling, optimization, and production processes. The literature highlights SSDs' consistent performance in resisting both compression and tension, their adaptability in strength, ductility, and energy dissipation through modifications in strip configurations and the superiority of non-prismatic and hourglass-shaped designs over traditional options. Numerical analyses have been conducted to assess the effectiveness of non-prismatic slit dampers in comparison to their prismatic counterparts within braced frames. Three distinct braced frame configurations have been analyzed: one with a diagonal brace without a damper, another featuring a uniform prismatic slit damper, and a third incorporating a non-prismatic slit damper with an hourglass shape. The analysis primarily compared these systems' hysteresis behavior, ductility, and energy dissipation capacities. Results indicate a significant enhancement in performance when utilizing non-prismatic slit dampers. Notably, these dampers exhibited a remarkable 69% increase in cumulative energy dissipation compared to prismatic ones. Furthermore, the study reveals that a steel slit damper-braced frame, when equipped with optimally designed slit geometries, can tolerate inter-story drifts in excess of 2% while simultaneously achieving a greater than 12% increase in energy dissipation efficiency. Doi: 10.28991/CEJ-2024-010-04-019 Full Text: PDF
Optimization of Tuff Stones Content in Lightweight Concrete Using Artificial Neural Networks Amjad A. Yasin; Mohammad T. Awwad; Ahmad B. Malkawi; Faroq R. Maraqa; Jamal A. Alomari
Civil Engineering Journal Vol 9, No 11 (2023): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-11-013

Abstract

Tuff stones are volcanic sedimentary rocks formed by the consolidation of volcanic ash. They possess unique geological properties that make them attractive for a variety of construction and architectural applications. Considerable amounts and various types of Tuff stones exist in the eastern part of Jordan. However, the use of Tuff stones often requires experimental investigations that can significantly impact the accuracy of their physical and mechanical characteristics. To ensure consistent and predictable properties in their mix design, it is essential to minimize the effects of these experimental procedures. Artificial neural networks (ANNs) have emerged as a promising tool to address such challenges, leveraging their ability to analyze complex data and optimize concrete mix design. In this research, ANNs have been used to predict the optimum content of Tuff fine aggregate to produce structural lightweight concrete with a wide range (20 to 50 MPa) of compressive strength. Three different types of Tuff aggregates, namely gray, brown, and yellow Tuff, were experimentally investigated. A set of 68 mixes was produced by varying the fine-tuff aggregate content from 0 to 50%. Concrete cubes were cast and tested for their compressive strength. These samples were then used to form the input dataset and targets for ANN. ANN was created by incorporating the recent advancements in deep learning algorithms, and then it was trained, validated using data collected from the literature, and tested. Both experimental and ANN results showed that the optimum content of the various types of used Tuff fine aggregate ranges between 20 to 25%. The results revealed that there is a clear agreement between the predicted values using ANN and the experimental ones. The use of ANNs may help to cut costs, save time, and expand the applications of Tuff aggregate in lightweight concrete production. Doi: 10.28991/CEJ-2023-09-11-013 Full Text: PDF
Shear Performance of Deep Concrete Beams with Openings Using Waste Tyre Steel Fibres: FEM and ANN Analysis Daudi Salezi Augustino
Civil Engineering Journal Vol 10, No 8 (2024): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-08-02

Abstract

The creation of transverse openings in beams triggers the shear performance. The dual impact of height and length on the overall shear performance and strain variations in reinforcements of deep concrete beams with and without fibres was assessed to investigate the effect of opening in the beam. This effect of opening was explored and modelled using finite element software Abaqus and predicted using an artificial neural network (ANN) model. The data set for ANN was 56 deep concrete beams, while for the finite element model (FEM), 12 deep concrete beams were used. The effect of input parameters in the ANN model was assessed through sensitivity analysis. Results show that with an increase in opening depth, the strain in top steel reinforcement shifted to tensile strain, resulting in premature beam failure. In addition, experimental and FEM shear resistance had a mean absolute error (MAE) of 4.1, 5.0, and 20.6% for deep beams without fibres, with fibres and fibre mesh, respectively. Compared to available analytical models, the ANN model reasonably predicts the shear resistance with an R2of 0.84 and a mean square error (MSE) of 0.01. The use of the ANN and FEM models is recommended as they save time, and the prediction does not involve degradation of the environment, hence demonstrating sustainable construction practices. Doi: 10.28991/CEJ-2024-010-08-02 Full Text: PDF
Influence of Sunflower Seed Husks Ash on the Structure Formation and Properties of Cement Concrete Evgenii M. Shcherban'; Sergey A. Stel'makh; Alexey N. Beskopylny; Levon R. Mailyan; Besarion Meskhi; Andrei Chernil’nik; Diana El'shaeva; Anastasia Pogrebnyak; Roman Yaschenko
Civil Engineering Journal Vol 10, No 5 (2024): May
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-05-08

Abstract

The limitation of the application of non-renewable materials is one of the solutions to the problem of the sustainable evolution of civilization in the 21st century. Using additional binders in concrete obtained from plant waste will be economically and environmentally beneficial and will also allow us to move closer to achieving sustainable development goals. This study searches for rational composition components and a methodological approach regarding the technological characteristics to get the highest quality elements and prime concrete properties on the basis of sunflower seed husk ash (SSHA). Experimental concrete specimens were manufactured with partial Portland cement substitution with SSHA amounts ranging from 2% to 16% by weight in increments of 2%. This study focuses on investigating the density and workability of the concrete mixture, along with the compressive strength, concrete density, and water absorption. This article used granulometric, microscopic, and X-ray phase analysis methods. Including SSHA in all considered ranges reduces the slump in concrete mixtures. The optimal SSHA content in concrete is up to 12%. An 8% SSHA content has been found to deliver the most favorable mechanical characteristics of the concrete studied. The compressive strength of the investigated concrete has increased by 14.89%, and water absorption has decreased by 15.78%. Doi: 10.28991/CEJ-2024-010-05-08 Full Text: PDF
Optimization Studies of Iron Ore Tailings Powder and Natural Zeolite as Concrete Admixtures Mahmoud Al-Khazaleh; P. Krishna Kumar
Civil Engineering Journal Vol 9, No 12 (2023): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2023-09-12-08

Abstract

The disposal of Iron ore tailings Powder (IP) is the primary concern for numerous steel industries. Similarly, natural zeolite, a significant by-product of volcanic eruptions, pollutes the environment to an extreme degree. This study investigates and implements the extensive use of IP and natural zeolite as admixtures in M20-grade concrete in order to address the challenges posed by IP and zeolite. By varying the admixture percentage, three distinct mix ratios were formed. First, sand was replaced by iron at concentrations of 5%, 10%, 15%, and 20%. Second, cement was replaced by zeolite at 5%, 10%, 15%, and 20%. In the final mixture, both sand and cement were substituted with iron ore powder and zeolite, respectively, at 5%, 10%, 15%, and 20%. Conplast SP 430, a water-reducing admixture, was used in all of the mixtures at 1% by weight of cement. The mechanical properties of concrete, including compressive strength, split tensile strength, and flexural strength, were studied. To evaluate the long-term properties of admixture-modified concrete, durability tests such as permeability tests, water absorption tests, rapid chloride attack tests, acid attack tests, and sulphate attack tests were conducted. In addition, slump cone tests and thermal conductivity tests were conducted on all the mix combinations to determine the changes in workability and thermal conductivity coefficient. The test results demonstrated that a mix containing 10% zeolite replaced with cement and 10% iron ore tailing powder replaced with sand has the highest performance in terms of strength and durability characteristics. The study also constructs a comparable cost estimate to ensure that its actual implementation is feasible. Doi: 10.28991/CEJ-2023-09-12-08 Full Text: PDF
Load Capacity and Bending Strength of Double-Acting Friction Stir Welded AA6061 Hollow Panels Nurul Muhayat; Muhammad Budi Utama; Ericha Dwi Wahyu Syah Putri; Eko Prasetya Budiana; Aditya Rio Prabowo; Yohanes P. D. S. Depari; . Triyono
Civil Engineering Journal Vol 10, No 8 (2024): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-08-018

Abstract

Aluminum alloy hollow panels are essential components in both civil and mechanical structures, such as building floors or large vehicle platforms. They enhance rigidity while staying lightweight and conserving material volume. In its application, this panel must be joined using welding methods. One common issue encountered in aluminum welding is the formation of porosity defects. Solid-state welding methods like Friction Stir Welding (FSW) can be a solution to address this problem. The FSW joining process on hollow panels cannot be completed in one welding operation due to their thickness. The FSW process must be performed on both surfaces, which requires a relatively long time. Therefore, FSW needs to be developed into a Double-acting FSW that utilizes two tools simultaneously. These two tools introduce two sources of heat input, pressing force, and friction-stirring, resulting in a novel response that needs further research. This study delves into the impact of welding speed variations in Double-Acting FSW on the load capacity and bending strength of AA 6061 hollow panel joints. Welding speeds of 20, 30, and 40 mm/min were tested alongside rotational speed (1500 rpm), tilt angle (2°), and shoulder diameter (24 mm). It was discovered that reducing welding speed enhances both load capacity and bending strength. Notably, specimens welded at 20 mm/min exhibited a load capacity of 15.61 kN and bending strength of 52 MPa, highlighting the potential of slower speeds for superior weld performance. Doi: 10.28991/CEJ-2024-010-08-018 Full Text: PDF
Investigation of the Mechanical Behavior of Full-Scale Experimental Bugis-Makassar Timber House Structures Armin Aryadi; Herman Parung; Rita Irmawaty; Andi A. Amiruddin
Civil Engineering Journal Vol 10, No 6 (2024): June
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2024-010-06-04

Abstract

The Sulawesi region is located at the confluence of a smaller Philippine plate and three major global plates, namely the Indo-Australian, Pacific, and Eurasian. This strategic location makes Sulawesi and the surrounding earthquake-prone region in Indonesia. Recognizing the seismic vulnerability of this region, various measures, such as the use of houses on stilts, have been explored to enhance earthquake resistance. These structures are designed to avoid direct exposure to seismic energy, according to several reports on Indonesian earthquakes. In the last two years, an in-depth investigation has been carried out to analyze the behavior and resistance of Bugis Traditional Houses to earthquakes. Although simulation and computational studies are still in progress, the results show that Bugis-Makassar House on stilts maintains an elastic state with a high level of performance. Therefore, this study aimed to investigate the mechanical behavior of Bugis-Makassar stilt house structures using full-scale tests. During the investigation, experimental testing was conducted using house specimens measuring 1.5×2.3 m in the laboratory. A cyclic lateral loading analysis was performed using ISO 16670-2003 as a guide. The results showed that cyclic lateral loads caused house structures to sway, while the timber experienced minimal damage. Both the hysteresis energy, EH to EI, and the energy conversion ratio, GPE to ESE (ER), were found to be approximately balanced. This equilibrium suggested that seismic energy can be cyclically stored and released to reduce damage to structural elements. Doi: 10.28991/CEJ-2024-010-06-04 Full Text: PDF
Evaluating the Moisture Susceptibility of Asphalt Mixtures Containing RCA and Modified by Waste Alumina Sarah Khalid Ugla; Mohammed Qadir Ismael
Civil Engineering Journal Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges"
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-SP2023-09-019

Abstract

The management of building and demolition waste is an important subject in the government's sustainability efforts. Today, recycling and reusing industrial waste and by-products is a topic of considerable relevance in every industry, but it is especially important in cement and concrete technology. Within the asphalt pavement sector, the necessity for environmentally friendly highway design and construction is at the top of the priority list. Nevertheless, due to the inferior behavior of the resulting recycled concrete aggregate (RCA) mixes, additional enhancement materials are needed. In this study, the effect of using alumina waste in the form of secondary aluminum dross (SAD) in the asphalt compacted specimens that contained RCA as coarse aggregate was discussed. The conventional limestone dust filler is replaced by SAD at rates of 10, 20, and 30% by filler weight in the control mix, and then the best percentage is used in mixtures containing RCA at rates of 25, 50, 75, and 100%. The experimental work includes volumetric properties by employing the Marshall design method, indirect tensile strength (ITS), and compressive strength. All the used percent of SAD enhanced the properties of the asphalt mixture; the tensile strength ratio (TSR) of the control mixture increased by 4.58%, 8.52%, and 7.64% for SAD rates (10, 20, and 30%), respectively. The best dosage of SAD was added to the mixture containing RCA at different specified rates. The maximum TSR (13.92%) was obtained at 25% RCA. The same steps were followed in the compressive strength test; adding SAD increased the index of retained strength (IRS) of the control mixture by 55.11, 13.42, and 9.13% for 10, 20, and 30%, respectively. Thereafter, the best dosage of 20% SAD was added to the hot mix asphalt (HMA) containing different RCA percents. The maximum IRS (17.43%) was also obtained at a 25% RCA. Doi: 10.28991/CEJ-SP2023-09-019 Full Text: PDF

Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol. 10 No. 5 (2024): May Vol 10, No 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue