cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Civil Engineering Journal
Published by C.E.J Publishing Group
ISSN : 24763055     EISSN : 24763055     DOI : -
Core Subject : Engineering,
Civil Engineering Journal is a multidisciplinary, an open-access, internationally double-blind peer -reviewed journal concerned with all aspects of civil engineering, which include but are not necessarily restricted to: Building Materials and Structures, Coastal and Harbor Engineering, Constructions Technology, Constructions Management, Road and Bridge Engineering, Renovation of Buildings, Earthquake Engineering, Environmental Engineering, Geotechnical Engineering, Highway Engineering, Hydraulic and Hydraulic Structures, Structural Engineering, Surveying and Geo-Spatial Engineering, Transportation Engineering, Tunnel Engineering, Urban Engineering and Economy, Water Resources Engineering, Urban Drainage.
Arjuna Subject : -
Articles 1,848 Documents
Main Reasons for Using of PPP Contracts in Health Sector: An Analytical Study Aqeel Salahuddin Mahdi Al-Shadeedi; Angham E. A. Al-Saffar; Azhar Hussein Salih
Civil Engineering Journal Vol 5, No 9 (2019): September
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091387

Abstract

The health sector in Iraq had faced enormous challenges. The health care system suffered a catastrophic deterioration under the former regime. The 1991 Gulf war incurred Iraq’s major infrastructures huge damages; includes health centers, clinics, hospitals, etc. The United Nations economic sanctions aggravated the deterioration process. The level of health care in Iraq has dropped markedly as the government budget allocated to the Ministry of Health (MOH) had decreased from $ 450 million in 1970 to about $ 250 million in 1985 then the annual total health budget for the ministry, a decade after the sanctions had fallen to $ 22 million which is barely 5% of what it was in the 1970s. On the other hand, the conflict of 2003 destroyed an estimated 12 percent of hospitals. Moreover, the war at 2014 held on ISIS-led to almost total destruction in most hospitals in the Central and Northern provinces. All this requires a quick strategy to advance the health sector and create a sustainable health sector. The researchers in this study will demonstrate, what are the pros and cons of Public-Private Partnership (PPP) contracts, how can be used in the Iraqi health sector, the main causes of dependence the MOH to using the PPP contracts in the all existing and the unfinished hospitals.
Effect of Using Recycled Coarse Aggregate to the Bond Stress in Term of Beam Splice Specimens Abbas Sadiq Mohammed; Ali Laftah Abbas
Civil Engineering Journal Vol 5, No 10 (2019): October
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091403

Abstract

In fact, demolition west disposal represents a serious problem in the civil engineering work since such materials are accumulated in large quantities. In this way, using these materials in new construction is considered a good sustainable and cost effective solution. The basic objective of this study is to investigate the behavior of lap splice when recycled coarse aggregate is used in structural members by experimental program. This program comprises casting 12 beam splice specimens. Two mix designs are proposed with nominal compressive strength of 20 and 30 MPa, more precisely, the degrees of coarse recycled aggregate partial replacement ratio that taken throughout this study are 0, 50 and 100% respectively using a crushed concrete casted with the same original mixes defined.  Since a considerable lack of information was observed about the role of recycled coarse aggregate when the bond stress is taken into account, the beam splice specimens during this study were devoted to investigate lap splice bond strength in both singly and doubly beams to discover the desired behavior in tension and compression. The results showed that the degree of recycled coarse aggregate decreases the consequent bond stress in term of beam splice specimens for singly and doubly beams. The brittle failure behavior is evident in the entire beam specimens that conducted throughout this study.
Study of Biomass Bottom Ash Efficiency as Phosphate Sorbent Material Alzeyadi, Ali; Al-Ansari, Nadhir; Laue, Jan; Alattabi, Ali
Civil Engineering Journal Vol 5, No 11 (2019): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091419

Abstract

Excessive richness of nutrients in water bodies such as rivers, lakes and ponds lead into deterioration of aquatic life as a results of dense growth of algae. Phosphate is one of the main nutrients that should be controlled to prevent this serious issue. Utilizing low cost material as a phosphate sorbent is offering a treatment method characterized as a sustainable solution. In this study the efficiency of biomass bottom ash BBA as phosphate sorbent material from aqueous solution is investigated. Batch experiments were undertaken, in which a particular mass of BBA was brought into contact with the phosphate solution. The experiments studied the influence of pH (different phosphate solutions were prepared with pH range 4 to 8), temperature (adsorption capacity measured at the temperature range of 10 to 30 °C), and contact time. In addition, the adsorption isotherm models were also applied to better understand the mechanism of phosphate sorption by BBA. The results revealed that the bonding between the cations (BBA surface) and anions (phosphate solution) is significantly affected by the pH of the solution. BBA presents an excellent phosphate sorption, especially, at low pH value and temperature around 20 oC. The method of this research can be adopted as a followed strategy for examination the capability of selected material for phosphorus removal from wastewater.
A Novel Buffer Tank to Attenuate the Peak Flow of Runoff Yinghong Qin; Zhengce Huang; Zebin Yu; Zhikui Liu; Lei Wang
Civil Engineering Journal Vol 5, No 12 (2019): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091430

Abstract

Impermeable pavements and roofs in urban areas convert most rainfall to runoff, which is commonly discharged to local sewers pipes and finally to the nearby streams and rivers. In case of heavy rain, the peak flow of runoff usually exceeds the carrying capacity of the local sewer pipes, leading to urban flooding. Traditional facilities, such as green roofs, permeable pavements, soakaways, rainwater tanks, rain barrels, and others reduce the runoff volume in case of a small rain but fail in case of a heavy rain. Here we propose a novel rainwater buffer tank to detain runoff from the nearby sealed surfaces in case of heavy rain and then to discharge rainwater from an orifice at the tank’s bottom. We found that considering a 100m2 rooftop with 0.80 runoff coefficient and a 10cm rainfall depth for an hour, a cubic tank with internal edge side of a square of 2 m attenuates the peak flow about 45%. To reduce a desirable peak flow, the outlet orifice of the buffer tank must be optimized according to site-specific conditions. The orifice can be set at an elevation from the tank’s bottom to create a dead storage for harvesting rainwater.
Mineralogy, Micro-fabric and the Behavior of the Completely Decomposed Granite Soils Elsayed Elkamhawy; Bo Zhou; Huabin Wang
Civil Engineering Journal Vol 5, No 12 (2019): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091447

Abstract

The main objective of this study is to investigate the impact of the micro-fabric and soil mineralogy on the overall macro-behavior of the completely decomposed granite soil through a set of drained and undrained triaxial shearing and isotropic compression tests on a medium-coarse grading completely decomposed granite soil. The mineral composition of the soil was a substantial factor governing the compressive behavior. The soil compressibility increased significantly in the case of existence crushable and weak minerals within the soil minerals like fragile feldspar, as well as the high content of fines, especially the plastic fines. The scanning electron microscopic photos indicated that the micro-fabric of the soil had a paramount impact on the compressive behavior. The mechanism of the volumetric change depended on the stress levels, the soil mineral composition and the grain morphology. In the low consolidated stress levels, the soils’ grains rearrangement was the prevailing mechanism of the volumetric change, particularly with the absence of weak and crushable minerals. On the other hand, at the high consolidated stress levels, particles’ crushing was the prevailing mechanism in the volumetric change. Both the mechanisms of volume change could occur simultaneously at the low stress levels in the case of presence crushable minerals in addition to micro-cracks in the soil grains. The soil showed an isotropic response after 250 kPa, as this stress level erased the induced anisotropy from the moist tamping preparation method. Under the drained shearing conditions, the soil showed a contractive response, while during the undrained shearing conditions, the soil exhibited both the contractive and dilative responses with phase transformation points. The studied soil showed a unique critical state line, irrespective of the drainage conditions and initial states, the critical state line was parallel to the isotropic compression line in the void ratio effective stress space. In the deviator effective mean stresses space, the studied soil approached a unique CSL with a critical stress ratio equal 1.5, corresponding to critical friction angle of 36.8°.
Car-following Behavior Analysis of Left-turn Vehicles at Signalized Intersections Fulu Wei; Long Chen; Yongqing Guo; Mingtao Chen; Jiaxiang Ma
Civil Engineering Journal Vol 6, No 1 (2020): January
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091463

Abstract

In order to enrich the car-following theory of urban signalized intersections, and reveal the car-following characteristics of left turn at signalized intersections, the car-following behavior of left turn at signalized intersections is studied. The car-following data acquisition test which was based on high precision GPS was designed. And the car-following characteristics of left-turning vehicles at signalized intersections with different turning radii were analyzed. Based on which, the influence of radius on the car-following behavior was explained, and the New Full Velocity Difference (NFVD) model was developed. The genetic algorithm was used to calibrate the parameters of the NFVD model. The stability and accuracy of the calibrated model was further analyzed by using field data. The results showed that the average speed of the following car increases with the turning radius of the signalized intersection; the car-following speed which the highest frequency occurs under different turning radii tends to increase with the enlargement of turning radius; the larger the average headway distance between the car-following vehicles, the more intense of the driver’s response to the deceleration of the front vehicle. These findings could be used in traffic simulation and to make engineering decisions.
Effect of 12-hour fire on Flexural Behavior of Recyclable Aggregate Reinforced Concrete Beams Abdul Hafeez Buller; Bashir Ahmed Memon; Mahboob Oad
Civil Engineering Journal Vol 5, No 7 (2019): July
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091350

Abstract

Fire being one of the hazards causes external and internal adverse effects on concrete. On the other hand, demolishing waste causes numerous environmental issues due to lack of proper disposal management. Therefore, this research work presents experimental evaluation of effect of 12-hur fire on flexural behavior of reinforced concrete beams made with partial replacement of natural coarse aggregates with coarse aggregates from demolished concrete. The model beams are prepared using both normal and rich mix. Natural coarse aggregates are replaced in 50% dosage. Also, the beams without recyclable aggregates are prepared to check the results of proposed beams. After 28-day curing all the beams are exposed to fire for 12-hour at 1000°C in purpose made oven, followed by testing in universal load testing machine under central point load. During the testing deflection, load, and cracks are monitored. Analysis of flexural behavior and cracking reveals that after 12-hour fire residual strength of the beams is 52%. This shows loss of the strength of reinforced concrete beams thus requires appropriate retrofitting decision before putting again the structure in service after fire. Observation of cracks shows that most of the beams failed in shear with minor flexural cracks. In comparison to the results of control specimen the proposed beams show good fire resistance. The outcome of the research will prove landmark for future scholars and help the industry personals in understanding the behavior of the material in fire.
Particle Swarm Optimization Based Approach for Estimation of Costs and Duration of Construction Projects Khalaf, Tarq Zaed; Çağlar, Hakan; Çağlar, Arzu; Hanoon, Ammar Nasiri
Civil Engineering Journal Vol 6, No 2 (2020): February
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091478

Abstract

Cost and duration estimation is essential for the success of construction projects. The importance of decision making in cost and duration estimation for building design processes points to a need for an estimation tool for both designers and project managers. Particle swarm optimization (PSO), as the tools of soft computing techniques, offer significant potential in this field. This study presents the proposal of an approach to the estimation of construction costs and duration of construction projects, which is based on PSO approach. The general applicability of PSO in the formulated problem with cost and duration estimation is examined. A series of 60 projects collected from constructed government projects were utilized to build the proposed models. Eight input parameters, such as volume of bricks, the volume of concrete, footing type, elevators number, total floors area, area of the ground floor, floors number, and security status are used in building the proposed model. The results displayed that the PSO models can be an alternative approach to evaluate the cost and-or duration of construction projects. The developed model provides high prediction accuracy, with a low mean (0.97 and 0.99) and CoV (10.87% and 4.94%) values. A comparison of the models’ results indicated that predicting with PSO was importantly more precise.
Effect of Sheet Pile Driving on Geotechnical Behavior of Adjacent Building in Sand: Numerical Study Ali Basha; Mohammed Elsiragy
Civil Engineering Journal Vol 5, No 8 (2019): August
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2019-03091366

Abstract

Construction vibration such as sheet pile driving can produce earthborn vibrations which may be leads to problems for the supporting soils and adjacent structures. Vibrations create the stress waves traveling outward from the source through the soil and cause structural damage due to dynamic vibration induced settlement. The main aim of the present research is to study the vibration effect through sheet pile driving technique on the surrounding soil and adjacent structure. A series of plain strain finite element analysis using Plaxis 8.2 dynamic module is run to simulate the installation technique of a sheet pile unit using driving technique (hammer type). The effect of construction stages with different embedded sheet pile depth, sand relative density, and foundation distance from the driving source is also studied. The influence of hammer driving amplitude on the foundation response and excess pore water pressure are presented. The results showed that the increase of both embedment sheet pile depth and hammer efficiency can significantly produce higher excess pore water pressure and foundation settlement. The increase of sand density can also has a great effect in increasing the foundation damage of adjacent structure compared with low sand relative density. The building damage can significantly take place when the driving is closed to foundation.
Tensile Testing of Soils: History, Equipment and Methodologies Al Houri, Ausamah; Habib, Ahed; Elzokra, Ahmed; Habib, Maan
Civil Engineering Journal Vol 6, No 3 (2020): March
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/cej-2020-03091494

Abstract

Tensile strength of soil is indeed one of the important parameters to many civil engineering applications. It is related to wide range of cracks specially in places such as slops, embankment dams, retaining walls or landfills. Despite of the fact that tensile strength is usually presumed to be zero or negligible, its effect on the erosion and cracks development in soil is significant. Thus, to study the tensile strength and behavior of soil several techniques and devices were introduced. These testing methods are classified into direct and indirect ways depending on the loading conditions. The direct techniques including c-shaped mold and 8-shaped mold are in general complicated tests and require high accuracy as they are based on applying a uniaxial tension load directly to the specimen. On the other hand, the indirect tensile tests such as the Brazilian, flexure beam, double punch and hollow cylinder tests provide easy ways to assess the tensile strength of soil under controlled conditions. Although there are many studies in this topic the current state of the art lack of a detailed article that reviews these methodologies. Therefore, this paper is intended to summarize and compare available tests for investigating the tensile behavior of soils.

Page 60 of 185 | Total Record : 1848


Filter by Year

2015 2025


Filter By Issues
All Issue Vol. 11 No. 12 (2025): December Vol. 11 No. 11 (2025): November Vol. 11 No. 10 (2025): October Vol. 11 No. 9 (2025): September Vol. 11 No. 8 (2025): August Vol. 11 No. 7 (2025): July Vol. 11 No. 6 (2025): June Vol. 11 No. 5 (2025): May Vol 11, No 3 (2025): March Vol 11, No 2 (2025): February Vol 11, No 1 (2025): January Vol 10, No 12 (2024): December Vol 10, No 11 (2024): November Vol. 10 No. 11 (2024): November Vol 10, No 10 (2024): October Vol 10, No 9 (2024): September Vol 10, No 8 (2024): August Vol 10, No 7 (2024): July Vol. 10 No. 7 (2024): July Vol 10, No 6 (2024): June Vol 10, No 5 (2024): May Vol. 10 No. 5 (2024): May Vol 10, No 4 (2024): April Vol 10, No 3 (2024): March Vol 10, No 2 (2024): February Vol 10, No 1 (2024): January Vol 10 (2024): Special Issue "Sustainable Infrastructure and Structural Engineering: Innovations in Vol 9, No 12 (2023): December Vol 9, No 11 (2023): November Vol 9, No 10 (2023): October Vol 9, No 9 (2023): September Vol 9, No 8 (2023): August Vol 9, No 7 (2023): July Vol 9, No 6 (2023): June Vol 9, No 5 (2023): May Vol 9, No 4 (2023): April Vol 9, No 3 (2023): March Vol 9, No 2 (2023): February Vol 9, No 1 (2023): January Vol 9 (2023): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 8, No 12 (2022): December Vol 8, No 11 (2022): November Vol 8, No 10 (2022): October Vol 8, No 9 (2022): September Vol 8, No 8 (2022): August Vol 8, No 7 (2022): July Vol 8, No 6 (2022): June Vol 8, No 5 (2022): May Vol 8, No 4 (2022): April Vol 8, No 3 (2022): March Vol 8, No 2 (2022): February Vol 8, No 1 (2022): January Vol 7, No 12 (2021): December Vol 7, No 11 (2021): November Vol 7, No 10 (2021): October Vol 7, No 9 (2021): September Vol 7, No 8 (2021): August Vol 7, No 7 (2021): July Vol 7, No 6 (2021): June Vol 7, No 5 (2021): May Vol 7, No 4 (2021): April Vol 7, No 3 (2021): March Vol 7, No 2 (2021): February Vol 7, No 1 (2021): January Vol 7 (2021): Special Issue "Innovative Strategies in Civil Engineering Grand Challenges" Vol 6, No 12 (2020): December Vol 6, No 11 (2020): November Vol 6, No 10 (2020): October Vol 6, No 9 (2020): September Vol 6, No 8 (2020): August Vol 6, No 7 (2020): July Vol 6, No 6 (2020): June Vol 6, No 5 (2020): May Vol 6, No 4 (2020): April Vol 6, No 3 (2020): March Vol 6, No 2 (2020): February Vol 6, No 1 (2020): January Vol 6 (2020): Special Issue "Emerging Materials in Civil Engineering" Vol 5, No 12 (2019): December Vol 5, No 11 (2019): November Vol 5, No 10 (2019): October Vol 5, No 9 (2019): September Vol 5, No 8 (2019): August Vol 5, No 7 (2019): July Vol 5, No 6 (2019): June Vol 5, No 6 (2019): June Vol 5, No 5 (2019): May Vol 5, No 4 (2019): April Vol 5, No 4 (2019): April Vol 5, No 3 (2019): March Vol 5, No 3 (2019): March Vol 5, No 2 (2019): February Vol 5, No 2 (2019): February Vol 5, No 1 (2019): January Vol 5, No 1 (2019): January Vol 4, No 12 (2018): December Vol 4, No 12 (2018): December Vol 4, No 11 (2018): November Vol 4, No 11 (2018): November Vol 4, No 10 (2018): October Vol 4, No 10 (2018): October Vol 4, No 9 (2018): September Vol 4, No 9 (2018): September Vol 4, No 8 (2018): August Vol 4, No 8 (2018): August Vol 4, No 7 (2018): July Vol 4, No 7 (2018): July Vol 4, No 6 (2018): June Vol 4, No 6 (2018): June Vol 4, No 5 (2018): May Vol 4, No 5 (2018): May Vol 4, No 4 (2018): April Vol 4, No 4 (2018): April Vol 4, No 3 (2018): March Vol 4, No 3 (2018): March Vol 4, No 2 (2018): February Vol 4, No 2 (2018): February Vol 4, No 1 (2018): January Vol 4, No 1 (2018): January Vol 3, No 12 (2017): December Vol 3, No 12 (2017): December Vol 3, No 11 (2017): November Vol 3, No 11 (2017): November Vol 3, No 10 (2017): October Vol 3, No 10 (2017): October Vol 3, No 9 (2017): September Vol 3, No 9 (2017): September Vol 3, No 8 (2017): August Vol 3, No 7 (2017): July Vol 3, No 7 (2017): July Vol 3, No 6 (2017): June Vol 3, No 5 (2017): May Vol 3, No 5 (2017): May Vol 3, No 4 (2017): April Vol 3, No 3 (2017): March Vol 3, No 2 (2017): February Vol 3, No 2 (2017): February Vol 3, No 1 (2017): January Vol 2, No 12 (2016): December Vol 2, No 12 (2016): December Vol 2, No 11 (2016): November Vol 2, No 11 (2016): November Vol 2, No 10 (2016): October Vol 2, No 9 (2016): September Vol 2, No 9 (2016): September Vol 2, No 8 (2016): August Vol 2, No 8 (2016): August Vol 2, No 7 (2016): July Vol 2, No 7 (2016): July Vol 2, No 6 (2016): June Vol 2, No 6 (2016): June Vol 2, No 5 (2016): May Vol 2, No 4 (2016): April Vol 2, No 3 (2016): March Vol 2, No 3 (2016): March Vol 2, No 2 (2016): February Vol 2, No 1 (2016): January Vol 1, No 2 (2015): December Vol 1, No 1 (2015): November More Issue