cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Chemistry
ISSN : 14119420     EISSN : 24601578     DOI : -
Indonesian Journal of Chemistry is an International, peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry including applied chemistry. The journal is accredited by The Ministry of Research, Technology and Higher Education (RISTEKDIKTI) No : 21/E/KPT/2018 (in First Rank) and indexed in Scopus since 2012. Since 2018 (Volume 18), Indonesian Journal of Chemistry publish four issues (numbers) annually (February, May, August and November).
Arjuna Subject : -
Articles 25 Documents
Search results for , issue "Vol 24, No 1 (2024)" : 25 Documents clear
Characterization of Synthetic Humin from Solid Hydrolysate and Biochar from Hydrothermal Carbonization Products of Chicken Feather Waste Siti Dewi Fatimah; Agus Kuncaka; Roto Roto
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.78688

Abstract

Solid hydrolysate and biochar 2:1 are synthetic humus from hydrothermal carbonization of chicken feather waste and contain humin that can be isolated by IHSS method. The recalcitrant humin is obtained in solid form. The yield of isolated humin from biochar 2:1 was 44.5%, and humin from solid hydrolysate was 12.7%. Analysis of humin by FTIR indicated the characteristics of complex functional groups. Based on the XRD and TEM tests, humin is formed from amorphous crystals with <14 nm in size and categorized as a superparamagnetic nanoparticle. The surface morphology of humin from solid hydrolysate is in the form of small spheres attached to larger particles, while humin from biochar 2:1 is smoother and has a larger surface area. This synthetic humin contains the nutrients N, O, Si, Cu, S, Mg, Zn, and K based on the EDX test quantitatively supported by AAS analysis. Characteristics of humin, which contains nutrients, are composed of amorphous crystals with complex functional groups during the hydrothermal carbonization process. Their relatively small heterogeneous molecules are stabilized by hydrophobic interactions and hydrogen bonds to form supramolecular compound associations in hour order. This humin content in synthetic humus is expected to increase its utility as a soil improver.
Enhancement of the Silicon Nanocrystals’ Electronic Structure within a Silicon Carbide Matrix Soni Prayogi
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.79864

Abstract

Using plasma-enhanced chemical vapor deposition (PECVD), a mixed gas of silane (SiH4) and methane (CH4) was diluted with hydrogen (H2) to produce thin films of silicon nanocrystals embedded in a silicon carbide (SiC) matrix. This method prevents the co-deposition of SiH and SiC from high-temperature annealing procedures. This study experimentally explores the improvement of the electronic structure by adjusting two processing parameters according to classical nucleation theory (ratio of SiH4 to CH4 and working gas pressure). The deposited films were examined using ellipsometry spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, and photoluminescence to determine grain size, crystal volume fraction, topography, and bond configurations. The results show that increasing the working gas pressure can increase the density of SiC, while increasing the ratio of SiH4 to CH4 can only produce larger grain sizes. This is consistent with how SiC works and grows. Without using a high-temperature annealing procedure, this technique can improve the electrical structure of SiC contained in the SiC matrix formed by PECVD.
Adsorption of Crystal Violet with Magnetic Graphene Oxide Nano Adsorbent Synthesized from Schima wallichii Wood Danar Arifka Rahman; Mindriany Syafila; Qomarudin Helmy
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.80894

Abstract

The textile industry continues to experience production developments to reach a target for the country's economic development. The increase in production leads to an increase in the amount of waste generated. Dyes such as crystal violet (CV) in textile wastewater are toxic and difficult to remove by conventional treatment. Adsorption with nano adsorbent has been widely researched and developed to remove dyes in the environment because it has various advantages. Magnetic graphene oxide (GO-Fe3O4) as a006E adsorbent has been widely studied because it has a large surface area, strong chemical bonds and is easily separated from the aqueous phase. Puspa (Schima wallichii) wood has the potential to be used as a natural source of graphite. The characterization of the adsorbent was tested with FTIR, SEM-EDS, and BET. The equilibrium time for the adsorption process was 20 min, while the optimum adsorbent dose was 0.04 g. Adsorption isotherm and kinetics analysis showed that CV adsorption using MGO followed Langmuir and pseudo-second-order models, respectively. Thermodynamic studies displayed that the CV adsorption was endothermic and spontaneous. The results of this study suggested that the adsorption of CV using GO-Fe3O4 nano adsorbent from S. wallichii wood proceeds by chemisorption and physisorption.
Effect of Synthesis Temperature on Adsorbent Performance of Blending Anionic and Cationic Gels in Divalent Metal Ions Adsorption Eva Oktavia Ningrum; Suprapto Suprapto; Saidah Altway; Warlinda Eka Triastuti; Afan Hamzah; Agus Surono; Lulu Sekar Taji; Erlangga Ardiansyah
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.82104

Abstract

In this study, the anionic and cationic gels were synthesized separately using copolymerization between N-isopropylacrylamide (NIPAM) and acrylic acid or chitosan through a polymerization reaction using N,N'-methylenebisacrylamide (MBAA) as a cross-linker with various monomer concentrations and synthesis temperature. The anionic and cationic gels were blended to minimize inter-intra particle association and to improve the adsorption ability. The FTIR analysis found that the synthesis of the NIPAM-co-acrylic acid and NIPAM-co-chitosan gels was successfully carried out, indicating no presence of a vinyl group in the functional group. The result showed that the ion adsorption amount of Pb2+ ions blending gels increased significantly, almost twice compared to the adsorption before blending. The adsorption amount of Pb2+ ions increased with increasing the gel synthesis temperature. The adsorption amount follows the order of Pb2+ > Fe2+ > Ni2+. The adsorption amount of Pb2+ tends to decrease with increasing sedimentation volume. The higher the synthesis temperature, the larger the porous diameter formed. These results demonstrate that blending gel of NIPAM-co-chitosan and NIPAM-co-acrylic acid is a feasible alternative for removing heavy metal ions owing to its good adsorption performance.
Simultaneous Analysis of Dopamine and Ascorbic Acid Using Polymelamine/Gold Nanoparticle-Modified Carbon Paste Electrode Muji Harsini; Ainy Nur Farida; Erna Fitriany; Denok Risky Ayu Paramita; Afaf Baktir; Fredy Kurniawan; Satya Candra Wibawa Sakti; Yudhi Dwi Kurniawan; Bernadeta Ayu Widyaningrum
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.83301

Abstract

Modification of electrode using polymelamine (PM) and gold nanoparticles (AuNPs) has been successfully developed via electropolymerization and electrodeposition onto carbon paste electrode (CPE) using cyclic voltammetry (CV) technique. The modified electrode (AuNPs/PM/CPE) was applied as voltammetry sensors in a simultaneous of dopamine (DA) and ascorbic acid (AA). AuNPs/PM/CPE presented an effective surface area 5 times wider than CPE and demonstrated good electrocatalytic performance in the oxidation of DA and AA in 0.1 M phosphate buffer solution (pH 3) with a scan rate of 100 mV s−1. The differential pulse voltammetry (DPV) technique was chosen as the best method for separating potential peaks of DA and AA. The linear response for determining DA and AA using the DPV technique produced a concentration range of 0.1–13 and 0.4–12 µM with coefficient linearity of 0.9999 and 0.9997, the limit of detection of 0.1405 and 0.2187 µM, the accuracy of 89.62–109.16%, and 83.63–105.08%, and the precision of 0.017–0.701% and 0.066–0.626%, respectively. In addition, this electrode was applied in a real sample of infant urine with a concentration of 1 µM by spike method and found 98.86 and 98.28% as percent recovery of DA and AA, respectively.
Synthesis and Antibacterial Activity of Azomethine Ligand and Their Metal Complexes: A Combined Experimental and Theoretical Study Khalidah Hamil Manati Al Furaiji; Rehab Abdul Mahdi Al Hassani; Hanaa Hassan Hussein
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.83508

Abstract

An asymmetrical Schiff base triazole ligand (4-((3-mercapto-5-(naphthalen-1-ylmethyl)-4H-1,2,4-triazol-4-yl)imino)methyl)methoxy) (L) was used to generate novel micro complexes of Cr(III), VO(IV), and Mn(II) ions. Different spectroscopic techniques, including UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), flame atomic absorption, conductivity tests, CHNS elemental analysis, and magnetic susceptibility, were used to determine the structures of the Schiff base micro complexes. The density functional theory (DFT) calculation was screened to consider selected complexes. The observed data indicated their stability, and the expected chemical formula of vanadium(IV) was square pyramidal geometry in VO(L) complex formula. In contrast, the Cr(III) and Mn(II) complexes have octahedral geometry in the formulas. Frontier molecular orbitals calculations (MO) have also been performed to better understand the nature of orbitals, EHOMO, and ELUMO, allowing us to confirm the experimental finding. Pseudomonas aeruginosa and Bacillus subtilis, two types of potentially dangerous bacteria, were subjected to tests to see whether L and its metal complexes have any antibacterial activities or not. All compounds were also tested for their antifungal activity against two different types of fungi, Penicillium spp. and Aspergillus flavus. There is significant action has been noted in all cases for the complexes.
Cytotoxic Dammarane-Type Triterpenoids from Aglaia cucullata Peel Fruit Intan Hawina Anjari; Desi Harneti; Kindi Farabi; Al Arofatus Naini; Ace Tatang Hidayat; Risyandi Anwar; Hadi Kuncoro; Mohamad Nurul Azmi; Unang Supratman
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.83694

Abstract

Four triterpenoids, known as dammarane-type, dammaradienone (1), 20(S),25-epoxy-5α-dammar-20-en-3-one (2), 20(S)-5α-dammar-24-en-3α,20-diol-3-acetate (3) and 3α-acetyl-20S,24S-epoxy-25-hydroxydammarane (4), were isolated from Aglaia cucullata peel fruit. The structures of isolated compounds were identified based on their HR-TOFMS data and extensive NMR spectroscopic analysis, as well as compared with literature data. Compounds 1-4 were assessed for cytotoxic effects against HeLa cervical and B16-F10 melanoma skin cancer cells. All compounds showed moderate to weak activity against B16-F10 cancer cells, while compound 2 exhibited the strongest activity against HeLa cancer cells with IC50 of 7.10 µg/mL indicating that the existence of an epoxy moiety at the side chain increases the cytotoxicity to HeLa cells.
Study of Environmental Isotopes and Hydrochemical Characteristics of Groundwater from Springs at Archaeological Sites in Dompu Regency, West Nusa Tenggara, Indonesia Satrio Satrio; I Nyoman Rema; Sonny Christophorus Wibisono; Luh Suwita Utami; Nyoman Arisanti; I Gusti Ngurah Jayanti; I Wayan Rupa
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.83792

Abstract

The existence of groundwater sources in several springs at archaeological sites in Dompu Regency, West Nusa Tenggara, Indonesia, has been widely used by the surrounding community for various needs. However, from a number of the springs, there are springs whose water discharge has decreased. Meanwhile, from a number of existing springs, there is one spring whose groundwater is used every day even though it tastes a bit brackish. For this reason, it is important to conduct a groundwater study in the area with the aim of knowing the characteristics, preliminary identification of recharge areas and quality of groundwater in the study area through an environmental isotope and hydrochemical. The study was conducted by taking a number of groundwater samples from several archaeological sites in Dompu Regency. The results of environmental isotope and hydrochemical analysis show that there are 2 springs (2 archaeological sites), namely the Riwo and Ncona springs, because these two areas are part of the recharge area, which must be preserved by not clearing forest land. Meanwhile, for the quality of groundwater, of the 5 springs located at the archaeological sites, only the Hodo spring is of “poor quality” with the Na–Cl water type; it is unfit for drinking water.
Development of Magnetic-Silica Particles and In-house Buffers Kit for SARS-CoV-2 and CDV RNA Extraction Ahadi Damar Prasetya; Muflikhah Muflikhah; Wildan Zakiah Lubis; Andon Insani; Grace Tjungirai Sulungbudi; Mujamilah Mujamilah; Uus Saepulloh
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.83804

Abstract

Since the end of 2019, COVID-19 pandemic caused by the novel SARS-CoV-2 has become a serious problem for the world. Accurate and rapid techniques in testing and tracing are needed to control the virus spreading. Molecular diagnostics through gene amplification techniques, especially PCR, still become the gold standard for SARS-CoV-2 detection, which requires the first step of RNA extraction and purification. The limitations of commercial RNA extraction-purification kits during the pandemic caused a big problem in testing and tracing, especially for developing countries. A simple RNA extraction-purification kit based on magnetic-silica (MAGSi) beads and non-guanidine in-house buffers for RNA virus extraction-purification has been developed. Two types of MAGSi beads with different magnetic nanoparticles (MNPs) content were synthesized through a modified Stöber’s method using the sonication technique. The PCR result shows that both the MAGSi beads and the buffer can be used as a kit for RNA extraction-purification, tested for SARS-CoV-2 and Canine Distemper Virus. Further study shows that MAGSi-1 has better RNA extraction ability, and a higher concentration of RNA has been extracted. This is likely because of the smaller particle size distribution (50–1,500 nm distribution) and higher magnetization (20.2 emu/g) of MAGSi-1 compared to MAGSi-2 with 100–1,700 nm size distribution and 14.2 emu/g magnetization.
Antibiofilm Efficiency of CaF2/TiO2 Strontium Borate Bioactive Glass Composites against Pseudomonas aeruginosa and Gamma Radiation Effect Eman Mohamed Abou Hussein; Noha Mohamed Abou Hussien; Sabrin Ragab Mohamed Ibrahim; Mahmoud Abdelkhalek Elfaky; Tamer Dawod Abdelaziz
Indonesian Journal of Chemistry Vol 24, No 1 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.84412

Abstract

Microbial drug resistance has emerged as one of the most fundamental health threats. The current work aims to assess the antibacterial and antibiofilm potential of strontium borate bio-glasses (BBGs). Three CaF2/TiO2 strontium borate compositions have been prepared through melting annealing methods. The XRD pattern displays the amorphous nature of the glassy samples. The primary structural components of the borate, the trigonal BO3 and tetrahedral BO4 group, can be observed in FTIR spectra. Sharpness and shifting peaks to longer wavenumbers were evident after 40 kGy of gamma radiation. In contrast, density and molar volume (Vm) reveal an obvious change after irradiation. The agar diffusion technique was conducted as a preliminary screening of the antibacterial activity against Pseudomonas aeruginosa. The studied samples possessed no antimicrobial activity toward this strain; however, samples with 2% CaF2 strontium borate (T1) and 5% TiO2 strontium borate (T3) had higher biofilm inhibition potential (inhibition percentages of 75.17 and 65.77%, respectively). The gamma irradiation procedure had an unexpected detrimental effect on the bio-glass antibiofilm activity, making it unsuitable for use in sterilization procedures. Collectively, BBGs could be further investigated as possible antibacterial agents against biofilm-producing resistant strains.

Page 1 of 3 | Total Record : 25


Filter by Year

2024 2024


Filter By Issues
All Issue Vol 26, No 1 (2026) Vol 25, No 5 (2025) Vol 25, No 4 (2025) Vol 25, No 3 (2025) Vol 25, No 2 (2025) Vol 25, No 1 (2025) Vol 24, No 6 (2024) Vol 24, No 5 (2024) Vol 24, No 4 (2024) Vol 24, No 3 (2024) Vol 24, No 2 (2024) Vol 24, No 1 (2024) Vol 23, No 6 (2023) Vol 23, No 5 (2023) Vol 23, No 4 (2023) Vol 23, No 3 (2023) Vol 23, No 2 (2023) Vol 23, No 1 (2023) Vol 22, No 6 (2022) Vol 22, No 5 (2022) Vol 22, No 4 (2022) Vol 22, No 3 (2022) Vol 22, No 1 (2022) Vol 22, No 2 (2022) Vol 21, No 6 (2021) Vol 21, No 5 (2021) Vol 21, No 4 (2021) Vol 21, No 3 (2021) Vol 21, No 2 (2021) Vol 21, No 1 (2021) Vol 20, No 6 (2020) Vol 20, No 5 (2020) Vol 20, No 4 (2020) Vol 20, No 3 (2020) Vol 20, No 2 (2020) Vol 20, No 1 (2020) Vol 19, No 4 (2019) Vol 19, No 3 (2019) Vol 19, No 2 (2019) Vol 19, No 1 (2019) Vol 18, No 4 (2018) Vol 18, No 3 (2018) Vol 18, No 2 (2018) Vol 18, No 1 (2018) Vol 17, No 3 (2017) Vol 17, No 2 (2017) Vol 17, No 1 (2017) Vol 16, No 3 (2016) Vol 16, No 2 (2016) Vol 16, No 1 (2016) Vol 15, No 3 (2015) Vol 15, No 2 (2015) Vol 15, No 1 (2015) Vol 14, No 3 (2014) Vol 14, No 2 (2014) Vol 14, No 1 (2014) Vol 13, No 3 (2013) Vol 13, No 2 (2013) Vol 13, No 1 (2013) Vol 12, No 3 (2012) Vol 12, No 2 (2012) Vol 12, No 1 (2012) Vol 11, No 3 (2011) Vol 11, No 2 (2011) Vol 11, No 1 (2011) Vol 10, No 3 (2010) Vol 10, No 2 (2010) Vol 10, No 1 (2010) Vol 9, No 3 (2009) Vol 9, No 2 (2009) Vol 9, No 1 (2009) Vol 8, No 3 (2008) Vol 8, No 2 (2008) Vol 8, No 1 (2008) Vol 7, No 3 (2007) Vol 7, No 2 (2007) Vol 7, No 1 (2007) Vol 6, No 3 (2006) Vol 6, No 2 (2006) Vol 6, No 1 (2006) Vol 5, No 3 (2005) Vol 5, No 2 (2005) Vol 5, No 1 (2005) Vol 4, No 3 (2004) Vol 4, No 2 (2004) Vol 4, No 1 (2004) Vol 3, No 3 (2003) Vol 3, No 2 (2003) Vol 3, No 1 (2003) Vol 2, No 3 (2002) Vol 2, No 2 (2002) Vol 2, No 1 (2002) Vol 1, No 3 (2001) Vol 1, No 2 (2001) Vol 1, No 1 (2001) Article in press ARTICLE IN PRESS More Issue