cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
JOURNAL OF APPLIED INFORMATICS AND COMPUTING
ISSN : -     EISSN : 25486861     DOI : 10.3087
Core Subject : Science,
Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan reviewer.
Arjuna Subject : -
Articles 695 Documents
Chat GPT Impact Analysis on API Testing: A Controlled Experiment Setiawan, Yehezkiel David; Yudha, Laurentius Gusti Ontoseno Panata; Mulyono, Yovie Adhisti; Simalango, Veronica Marcella Angela; Karnalim, Oscar
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8182

Abstract

This research examines the impact of ChatGPT as a learning aid for students in API testing. A controlled experiment compared two groups: one utilizing ChatGPT and the other relying on traditional documentation. The findings indicate that participants using ChatGPT scored significantly higher in both exam tests compared to the documentation group, despite taking longer to complete tasks. Statistical analysis using t-tests confirmed these differences as significant. Post-test surveys revealed an increase in participants confidence and effectiveness in understanding and using APIs after interacting with ChatGPT. However, potential downsides, such as over-reliance on ChatGPT and insufficient deep conceptual understanding, were also observed. The results suggest that while ChatGPT can greatly enhance the quality of learning and productivity in API-related tasks, users must balance AI assistance with independent problem-solving skills. This study underscores the potential of ChatGPT as a valuable educational tool, provided it is integrated thoughtfully into the learning process.
Effect of Load Balancing Bonding and Failover on Speed, Latency, Average, and Packet Loss Toriq, Farhan; Santoso, Banu
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8276

Abstract

This study compares the performance between using load balancing bonding and not using load balancing bonding. This test was conducted on a virtual environment VMware and applied to an Internet Service Provider (ISP) network. The configuration was carried out on two routers connected with three virtual cables that function as load balancing bonding, for the computer to function as a load balancing bonding test. In this study, the workload given consisted of 1000 package. The results of this study showed better performance with load balancing bonding compared to without load balancing bonding, shown in the default condition, the speed with Balance Round Robin mode being higher with a value of 0,157Mbps (Tx) and 3.4Mbps (Rx). Latency with Balance Round Robin mode is smaller with a value of 729ms. The average with Balance Round Robin mode is higher with a value of 768bps. While the packet loss has the same result, namely 0% no lost packets were found. In failover conditions, the speed with Balance Round Robin mode is still higher with a value of 0,107Mbps (Tx) and 2.2Mbps (Rx). The value is"‹"‹ obtained from testing conducted on Bandwidth Test and Traceroute tools. It can be concluded that the use of load balancing bonding can provide a significant effect on improving network performance both when used in default conditions and in failover conditions based on speed, failover, latency, average, packet loss parameters in the research that has been conducted.
Automatic Vegetable Watering System Using Fuzzy Logic with Integration of Soil Moisture, Rain Sensors, and RTC Arginanta, Dallarizki; Ashari, Wahid Miftahul
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8319

Abstract

Conventional vegetable watering often presents challenges, particularly in ensuring that plants receive adequate water without excessive manual intervention. This research proposes a solution in the form of an automatic watering system using fuzzy logic, which integrates soil moisture sensors, rain sensors, and an RTC (Real-Time Clock) for scheduling. The system is designed to replace manual watering methods with an automated process, thus improving the efficiency and effectiveness of vegetable cultivation. The developed device uses a soil moisture sensor to monitor soil conditions, a rain sensor to detect rainfall, and an RTC to determine the optimal watering times. The Arduino Uno acts as the main controller that activates the water pump via a relay driver based on data received from the sensors. Test results show that the system operates according to the established criteria, with a satisfactory accuracy level. The system successfully waters the plants at 07:00 WIB and 15:00 WIB, based on dry soil conditions and no rain. The trials showed that the device has an average soil moisture measurement error of 5%, and a time discrepancy of about 22 seconds on the RTC module. Each 1% increase in soil moisture requires approximately 1 second of watering duration. Watering times are adjusted to prevent the plants from drying out or dying, with a soil moisture threshold of below 40% set as the condition for requiring watering.
Implementation of Samba Server Using OpenVPN Based on Single Board Computer (SBC) for Private Cloud Storage Pamungkas, Dwi Bayu Putra; Isnawaty, Isnawaty; Aksara, L.M. Fid
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8324

Abstract

In the current digital era, people's need for data storage media that is practical and can be accessed at any time is increasing. This research aims to design and implement a practical cloud-based data storage system using a Raspberry Pi 4 Model B device using the Samba and OpenVPN applications. The system focuses on storing users' data (private cloud), which allows users to directly access files and data via a storage server. The method used in this research includes a literature review to support system development. Testing was carried out to evaluate the security of the system being built by comparing access to private cloud server services before and after using the OpenVPN application. Test results show that using the OpenVPN application increases the security of data exchange, with good encryption in communications between client and server. The resulting system runs according to the initial design and can function as a secure private cloud system. This research can contribute to the development of efficient and secure data storage solutions, as well as show the potential for using the Raspberry Pi as an energy and cost-saving personal cloud server device.
Interpretable Machine Learning with SHAP and XGBoost for Lung Cancer Prediction Insights Kurniawan, Taufik; Hermawanti, Laily; Safriandono, Achmad Nuruddin
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8395

Abstract

Lung cancer remains one of the leading causes of death worldwide, and early detection through accurate and reliable methods is essential to improve patient prognosis. This study proposes a lung cancer classification model that integrates XGBoost with SHapley Additive exPlanations (SHAP) and Random Over Sampling (ROS) techniques to address the data imbalance problem. Using hyperparameter optimization through Optuna, the resulting model demonstrated superior performance, with an average accuracy of 96.84%, precision of 99.23%, recall of 94.51%, F1-score of 96.74%, specificity of 99.17%, and AUC of 96.84% in a 10-fold cross-validation evaluation. SHAP analysis provided significant interpretability, identifying key features such as gender, smoking habits, and physical signs of yellow fingers as the factors that most influence the model's predictions. The results of this study indicate that the proposed model is not only accurate, but also interpretable, making a significant contribution to supporting better clinical decision making in lung cancer diagnosis.
Application of MobileNetV2 and SVM Combination for Enhanced Accuracy in Pneumonia Classification Meindiawan, Eka Putra Agus; Muljono, Muljono
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8426

Abstract

Pneumonia is a very common respiratory infection in low- and middle-income countries and is still a leading cause of death, especially among children under five years old. Modern technologies, such as machine learning, offer significant potential in improving the automatic detection of pneumonia through chest X-ray (CXR) image analysis. This study aims to develop a more accurate pneumonia diagnosis system by evaluating various feature extraction methods. CXR datasets of pneumonia patients were resized to 180x180 pixels and balanced using the SMOTE-Tomek technique. Three main approaches were investigated: direct classification using Support Vector Machine (SVM) on the SMOTE-Tomek balanced dataset, feature extraction using Sobel edge detection followed by SVM classification, and feature extraction using MobileNet-V2 followed by SVM classification. The results showed that Scheme 1 achieved 97% accuracy, Scheme 2 decreased to 95%, and Scheme 3 achieved the highest accuracy at 98%. The lower accuracy in Scheme 2 is due to the limitations of Sobel edge detection, which reduces the key features in the CXR image. On the other hand, the improvement in Scheme 3 is due to the effective feature extraction capability of MobileNet-V2. In conclusion, the choice of feature extraction method plays an important role in determining the accuracy of an automated diagnostic system. This study builds on existing research and is expected to make a significant contribution to the development of more accurate and efficient automated diagnostic systems, which can ultimately help reduce pneumonia-related mortality.
Penerapan Algoritma Machine Learning Untuk Sistem Prediksi Penyakit Osteoporosis Wiryawan Sujana, Rajendra Artanto; Agastya, I Made Artha
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8448

Abstract

Osteoporosis is a condition characterized by decreased bone density, leading to fragile and easily fractured bones. This disease is a significant concern as it can cause disability, fractures, and death, particularly in the elderly population. Early detection of osteoporosis is crucial to prevent disease progression through timely interventions. This study aims to develop a machine learning-based prediction system capable of detecting osteoporosis using three different algorithms, Random Forest, Support Vector Machine (SVM), and Gradient Boosting. The study involves analyzing and comparing the performance of these algorithms based on evaluation metrics such as Accuracy, Precision, Recall, and F1 Score. The data used is processed in two formats, namely ordinal and one-hot encoding, to assess the impact of encoding techniques on model performance. The results show that the Gradient Boosting algorithm performs the best on both types of data, with the highest Accuracy of 91.07% on the one-hot encoded data. Meanwhile, SVM and Random Forest also demonstrate competitive performance but with slightly lower results. This study concludes that Gradient Boosting is the most effective algorithm for osteoporosis prediction in this research. These findings can serve as a foundation for further development in the early detection of osteoporosis and support more effective and efficient prevention and treatment efforts.
Betta Fish Identification System Based On Convolutional Neural Network Saputra, Gilang Ardhi; Agastya, I Made Artha
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8449

Abstract

This study developed an automated identification system based on the Convolutional Neural Network (CNN) to classify Betta Splendens, a fish species with high economic value in Indonesia. The system aims to improve accuracy and efficiency in the identification process. The research was divided into several experiments, where the data was split into 320 images for training, 80 for validation, and 100 for testing. We used two optimizers, Adam and RMSprop. The Adam optimizer experiments conducted two stages with learning rates of 0.0001 and 0.001, each with 100 and 200 epochs. The results showed that a lower learning rate (0.0001) with 200 epochs yielded the best test accuracy of 71%, while a learning rate of 0.001 caused accuracy to stagnate at 66%, indicating potential overfitting. The RMSprop optimizer with a learning rate of 0.00001 demonstrated good stability, though with slightly lower accuracy than Adam. This study highlights the importance of selecting the appropriate learning rate and number of epochs to achieve an optimal balance between training, validation, and testing accuracy, ensuring the model generalizes well to new data.
Text Data Security Using LCG and CBC with Steganography Technique on Digital Image Wildan, Muhammad; Ashari, Wahid Miftahul
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8457

Abstract

This research proposes a text data security method using a combination of Linear Congruential Generator (LCG), Advanced Encryption Standard (AES) Cipher Block Chaining (CBC) mode, and Least Significant Bit (LSB) steganography technique on digital images. The message scrambling process using LCG produces ASCII characters as noise that is inserted in the original message. After that, the message is encrypted using AES-256 CBC to provide additional security. The encryption result is then hidden in the digital image through LSB steganography technique. Tests were conducted on images with JPEG and BMP formats to measure the visual quality after the data insertion process, as measured by PSNR (Peak Signal-to-Noise Ratio). The test results show a PSNR value of 56.60 dB for JPEG images and 70.84 dB for BMP images. In addition, the insertion process in JPEG images degrades the image quality, mainly due to lossy compression, compared to the lossless BMP format. This study concludes that the proposed combination of methods is effective in hiding messages in images, but is susceptible to compression on lossy formats such as JPEG. The use of lossless image formats such as BMP or PNG is recommended to maintain data integrity.
Random Forest Algorithm for Toddler Nutritional Status Classification Website Fatmawati, Maylia; Herlambang, Bambang Agus; Nada, Noora Qotrun
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8463

Abstract

Accurate data processing is essential for classifying toddler nutritional status on a website platform. The Random Forest algorithm is particularly effective in this context due to its ability to manage large datasets and mitigate overfitting. This study leverages Flask as the web framework to ensure responsiveness and adaptability, optimizing the data processing experience for users. Using secondary data comprising 120,999 records, the research aims to answer: "What factors affect the accuracy of the Random Forest model in classifying toddler nutritional status?" Model evaluation yielded excellent performance metrics, with accuracy, precision, recall, and F1-score values of 99.91%, 100%, 100%, and 100%, respectively. These results highlight the informative attributes in the dataset, such as age, gender, and height, that enhance classification accuracy. The Flask-based website enables users, such as healthcare professionals and policymakers, to input essential data points and receive instant classification results, thereby supporting prompt and informed responses to nutritional health issues. This study confirms that the Random Forest algorithm, combined with an intuitive web interface, effectively classifies toddler nutritional status with high accuracy.