cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
JOURNAL OF APPLIED INFORMATICS AND COMPUTING
ISSN : -     EISSN : 25486861     DOI : 10.3087
Core Subject : Science,
Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan reviewer.
Arjuna Subject : -
Articles 695 Documents
Donor Segmentation Analysis Using the RFM Model and K-Means Clustering to Optimize Fundraising Strategies ., Rezki; Lapatta, Nouval Trezandy; Ardiansyah, Rizka; ., Wirdayanti; Angreni, Dwi Shinta
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8464

Abstract

This study aims to segment donors using the Recency, Frequency, Monetary (RFM) model and the K-Means algorithm to optimize fundraising strategies. The RFM model is used to measure donor engagement through three dimensions: Recency (the last time a donation was made), Frequency (the frequency of donations), and Monetary (the amount of donations). By utilizing RFM scores, donors are then grouped using the K-means algorithm to generate more specific donor segments. This study was conducted using donation data from a non-profit organization, focusing on strategies to improve donor loyalty and donation frequency. The segmentation results identified several key segments, including Loyal Donors, New Donors, Potential Donors, and Low-Priority Donors. Each segment exhibits different donation behavior characteristics and requires a different strategic approach. The implementation of these segmentation results is expected to help the organization design more effective communication strategies and donation programs, as well as improve donor retention and lifetime value. Additionally, this study identifies the potential for enhancing the analytical model for broader applications in the future. This research contributes to non-profit organizations by offering a more efficient approach to managing donor relationships.
Utilization of ResNet Architecture and Transfer Learning Method in the Classification of Faces of Individuals with Down Syndrome Pranatha, Made Doddy Adi; Setiawan, Gede Herdian; Maricar, M Azman
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8474

Abstract

Classifying the faces of individuals with Down Syndrome poses a significant challenge in image processing and genetic anomaly detection. This study leverages the ResNet34 architecture and transfer learning methods to improve classification accuracy for Down Syndrome facial recognition. Three experiments were conducted, varying the batch size, learning rate, and number of epochs. In the first experiment, the model achieved an accuracy of 82.83%, precision of 0.8362, recall of 0.8350, and an F1 score of 0.8348, showing promising performance but falling short of the target accuracy of 85%. The second experiment yielded the best results, with an accuracy of 87.88%, precision of 0.8956, recall of 0.8956, and an F1 score of 0.8956, indicating an optimal balance between correct predictions and errors. The third experiment resulted in the lowest accuracy, at 80.47%, with a precision of 0.8272, recall of 0.8249, and an F1 score of 0.8247, signifying a decline in performance compared to the other trials. Among the three experiments, the best configuration was achieved in the second trial, as the high recall value is crucial in medical contexts to ensure that as many individuals with Down Syndrome are correctly detected as possible, minimizing the risk of serious consequences due to false negatives.
Designing an Chatbot with NLP Technology in a Website-Based New Student Admission Information System Fauzan, Muhammad Fathan; Imanda, Rahmi; Hasbi, Muhammad Adryan
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8489

Abstract

In the fast pace of digitalization, student admission information system websites face the challenge of providing responsive and quality services to applicants. One emerging solution is the use of chatbots, which enable automated interaction with customers. Technology continues to transform over time. At SMK Insan Teknologi (InTek), the service process is still manual, such as physical archives for student registration, incomplete information, and the absence of an official website. To improve administration and data access, a web-based information system is offered. While the Chatbot helps in interactive services and time efficiency to answer registrants' questions, NLP is used to make the conversation in the chat more natural and easy to understand by registrants. The results of testing the system show that the system functions properly in responding to messages sent through the chatbot on the website both from the message text according to the intent, as well as abstract text and not according to the pattern with an accuracy rate of 87,5%. It is hoped that this research can improve the quality of service and administrative efficiency at SMK Insan Teknologi and can be applied in other educational institutions.
Performance Comparison of Random Forest and Decision Tree Algorithms for Anomaly Detection in Networks Ramadhan, Rafiq Fajar; Ashari, Wahid Miftahul
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8492

Abstract

The increase in cyber attacks has made network security a very important focus in this digital era. This research compares the performance of two machine learning algorithms, that is Random Forest and Decision Tree for detecting anomalies in networks using the UNSW-NB15 datasets, which include various types of attacks such as DoS, Backdoor, Exploits and others which will be used to train and test both models. The data collection method, pre-processing, data splitting and modelling using SMOTE method to handle data imbalanced were applied in both algorithms and then evaluated using accuracy, precision, recall and f1-score metrics. From the study result, it can be conclude that the Decision Tree algorithm performs better in detecting anomalies in binary data with an accuracy of 99,71%. However, in multi-class data, Random Forest showed slightly better performance, though it required significantly more time for training and prediction. Despite the small difference in accuracy, Decision Tree demonstrated faster prediction times, making it more efficient for time-sensitive applications. This research concludes that while Random Forest provides higher accuracy for complex datasets, Decision Tree offers a more time-efficient solution with comparable accuracy.
Prediction of Air Quality Index Using Ensemble Models Rochadiani, Theresia Herlina
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8532

Abstract

The impact of air pollution on health is measured by the Air Quality Index (AQI). Accurate AQI prediction is essential for pollution reduction and public health recommendations. Traditional methods of monitoring air quality are inaccurate and time-consuming. This study uses IoT-based air quality data from Kampung Kalipaten, Tangerang to build an AQI prediction model with machine learning, specifically an ensemble model. Ensemble techniques such as bagging and boosting, which increase the reliability of predictions by reducing model bias and inconsistency, improve AQI prediction. Four ensemble models used in this study, they are Random Forest Regressor, Gradient Boosting Regressor, Adaboosting Regressor, and Bagging Regressor. As the evaluation, RMSE and R2 metrics used. Random Forest Regressor perform the best with RMSE value of 0.6054 and R2 value of 0.6271, although no significant differences of RMSE and R2 value of the rest models.
Analysis of Splicing Manipulation in Digital Images using Dyadic Wavelet Transform (DyWT) and Scale Invariant Feature Transform (SIFT) Methods Muhidin, Zumratul; Karim, Muh. Nasirudin; Efendi, Muhamad Masjun
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8540

Abstract

In the digital age, image manipulation is common, often done before publication on social media. However, this can lead to negative impacts, including visual deception. This research aims to detect splicing type image manipulation using Dyadic Wavelet Transform (DyWT) and Scale Invariant Feature Transform (SIFT) methods. The process starts with image decomposition using DyWT to obtain LL sub-images, followed by local feature extraction using SIFT. An application built on desktop-based Matlab source was developed to detect splicing forgery in digital images. The test used 20 images, this image dataset was taken from canon 5d mark II camera and Vivo X80 mobile phone. Each 10 original images, and 10 edited images. These 10 original images are left as they are without making changes, editing or manipulation, while the other 10 images are changed, edited or manipulated using editing software, the results of this editing are uploaded to social media, such as Facebook and Instagram, which will later be used as datasets in testing. The results show that the splicing technique is detected accurately, and processing is faster on images with low pixel resolution. The DyWT and SIFT methods are effective in detecting post-processing attacks such as rotation and rescaling, although they have drawbacks. DyWT struggles in detecting subtle changes and noise, while SIFT is less effective on non-geometric manipulations. Overall, both methods face challenges in detecting complex manipulations and require significant computational resources, especially on high-resolution images.
Comparison of Hadoop Mapreduce and Apache Spark in Big Data Processing with Hgrid247-DE Utami, Firmania Dwi; Astuti, Femi Dwi
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8557

Abstract

In today's rapidly evolving information technology landscape, managing and analyzing big data has become one of the most significant challenges. This paper explores the implementation of two major frameworks for big data processing: Hadoop MapReduce and Apache Spark. Both frameworks were tested in three scenarios sorting, summarizing, and grouping using HGrid247-DE as the primary tool for data processing. A diverse set of datasets sourced from Kaggle, ranging in size from 3 MB to 260 MB, was employed to evaluate the performance of each framework. The findings reveal that Apache Spark generally outperforms Hadoop MapReduce in terms of processing speed due to its in-memory data handling capabilities. However, Hadoop MapReduce proved to be more efficient in specific scenarios, particularly when dealing with smaller tasks or when memory resources are limited. This is largely because Apache Spark can experience overhead when initializing tasks for smaller jobs. Furthermore, Hadoop MapReduce's reliance on disk I/O makes it more suitable for tasks involving vast amounts of data that surpass available memory. In contrast, Spark excels in situations where quick iterative processing and real-time data analysis are essential. This study provides valuable insights into the strengths and limitations of each framework, offering guidance for practitioners and researchers when selecting the appropriate tool for specific big data processing requirements, particularly with respect to speed, memory usage, and task complexity.
Aspect-Based Sentiment Analysis for Enhanced Understanding of 'Kemenkeu' Tweets Sejati, Priska Trisna; Alzami, Farrikh; Marjuni, Aris; Indrayani, Heni; Puspitarini, Ika Dewi
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8558

Abstract

The perceptions and expressions shared by the public on social media play a crucial role in shaping the reputation of government institutions, such as the Ministry of Finance MOF (Kemenkeu) in Indonesia which also has faced increased scrutiny, particularly on Twitter. This study analyzes public sentiment towards the Indonesian Ministry of Finance (MoF) through Aspect-Based Sentiment Analysis (ABSA) on Twitter data. Using a dataset of 10,099 tweets from January to July 2024, this study combines IndoBERT for sentiment classification and Latent Dirichlet Allocation (LDA) for topic modeling. Here, LDA was tested across four scenarios that considered various combinations of stopwords removal and stemming techniques, resulting in coherence scores of 0.314256, 0.369636, 0.350285, and 0.541752. The most optimal results were achieved in the scenario of stopwords removal without stemming (with 0.314256 coherence score). The main results show: 1) Identification of four main topics related to MoF: Economy, Budget, Employees, and Tax; 2) The dominance of negative sentiment (6,837 tweets) compared to positive sentiment (198 tweets) across all topics; 3) The effectiveness of IndoBERT in handling the complexity of the Indonesian language, especially in interpreting context and language nuances; 4) The importance of proper preprocessing, with a scenario of removing stopwords without stemming resulting in the most relevant topics. This study provides valuable insights for MoF to understand public perception and identify areas that require special attention in public communication and policy.
Real-time Detection Transformer (RT-DETR) of Ornamental Fish Diseases with YOLOv9 using CNN (Convolutional Neural Network) Algorithm Huda, Dwi Nurul; Romdoni, Mochammad Rizki; Safitri, Liza; Winarni, Ade; Rahman, Abdur
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8561

Abstract

The lack of specialized tools to check the condition of ornamental fish has hindered effective management. This research proposes a novel software architecture that uses the YOLOv9 model combined with RT-DETR to enable accurate and timely identification of ornamental fish conditions including fish diseases, empowering farmers and hobbyists with a valuable resource. This integration is done using Soft Voting Ensemble Learning technique. To achieve this goal, an Android mobile application successfully classified healthy fish and accurately identified common diseases such as bacteria, fungal, parasitic, and whitetail. Based on the test results, the integration accuracy of the YOLOv9 and RT-DETR models produced a high result of 0.8947 while the stand-alone YOLOv9 showed 0.8889 and the stand-alone RT-DETR of 0.8904. Recommendations are given for the combination of YOLOv9 and RT-DETR in condition detection and diagnosis of ornamental fish diseases.
ROVIGA: Model-Driven Soil Moisture Sensor for Internet-Connected Plant Pot Setiawan, Iman; Musa, Mohammad Dahlan Th.; Nurrahma, Andi; Alfina, Alfina; Rachman, Rohis; Ariza, Moh
Journal of Applied Informatics and Computing Vol. 8 No. 2 (2024): December 2024
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v8i2.8599

Abstract

The soil moisture sensor provides numerical measurements to detect changes in soil moisture using an analog voltage output. This research aims to develop a capacitive sensor based on a statistical model to detect soil moisture for plant watering, leveraging the Internet of Things (IoT). The analysis was conducted using polynomial and linear regression models. The modeling process was based on primary gravimetric test results from dried soil. The best model coefficients, selected based on the highest adjusted R-squared value, were used for sensor recalibration. A watering system was then developed using an Arduino and a model-driven capacitive soil moisture sensor integrated into an internet-connected smart plant pot, enabling remote control via a mobile phone. The research findings indicate that the 8th-order polynomial model, with the highest adjusted R-squared value of 0.9583, is the most accurate. The smart watering system using the model-driven capacitive sensor achieved soil moisture prediction outcomes ranging from 0.08 to 1.01 for 150 to 418 sensor data points. The internet-connected smart plant pot allows precise and real-time control, delivering notifications and enabling actions when plants require watering.