cover
Contact Name
Imam Mukhlash
Contact Email
Imam Mukhlash
Phone
-
Journal Mail Official
imamm@matematika.its.ac.id
Editorial Address
-
Location
Kota surabaya,
Jawa timur
INDONESIA
Limits: Journal of Mathematics and Its Applications
ISSN : 1829605X     EISSN : 25798936     DOI : -
Core Subject : Education,
Limits: Journal of Mathematics and Its Applications merupakan jurnal yang diterbitkan oleh Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia. Limits menerima makalah hasil riset di semua bidang Matematika, terutama bidang Analisis, Aljabar, Pemodelan Matematika, Sistem dan Kontrol, Matematika Diskrit dan Kombinatorik, Statistik dan Stokastik, Matematika Terapan, Optimasi, dan Ilmu Komputasi. Jurnal ini juga menerima makalah tentang survey literatur yang menstimulasi riset di bidang-bidang tersebut di atas.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 19, No 1 (2022)" : 12 Documents clear
Aplikasi Metode Proses Hirarki Analitik dan Pemrograman Integer 0-1 Dalam Menentukan Komposisi Pemain Sepak Bola pada Football Manager 2019 Christopher Aryo Pambudi; Benny Yong; Taufik Limansyah
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.9164

Abstract

Football has became a favorite sport of the world community. Every supporter of a football team would want their team to win the competition they participated in. Formation, strategy, and composition of teams are factors that influence the team's victory in a match. These three factors are the responsibility of a football coach in concocting his team in winning. This paper will discuss the application of the Analytical Hierarchy Process and the Integer 0-1 Program to assist football coaches in composing the composition of football players in a match. The AHP is used in this case to calculate the priority weights of each soccer player criteria while the Integer 0-1 Program is used to get eleven players to be deployed in a match. The results of both methods are simulated using the game Football Manager 2019 with team Manchester United in the English Premier League. Based on simulations conducted during the two season matches, Manchester United was able to finish in a fairly stable ranking in the English Premier League standings for two seasons.
Rumus Bilangan Reproduksi Dasar Covid-19 dengan Adanya Vaksinasi Dosis 1 dan 2 Aini Fitriyah
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.12249

Abstract

This study aims to determine the basic reproduction number for Covid-19 with vaccination. The research method used is a literature study. The research step begins with construct a mathematical model of Covid-19 with vaccination, determining the basic reproduction formula and simulation. The mathematical model of Covid-19 is constructed by distinguishing susceptible subpopulations that have vaccinated doses 1 or 2, as well as infected subpopulations that have been vaccinated or not before. The model is . The analysis shows that the basic reproduction formula consists of several types of parameters. It is in accordance with simulation by using Matlab software. Simulation was taken based on Covid-19 and vaccination data in the Central Java Province. It shows that the greater the value of individual being vaccinated, the lower the basic reproduction number. This means that Covid-19 can disappear if more individuals get vaccinated against Covid-19.
Sifat Kemonotonan Barisan Trapezoid Sum dari Kelas Fungsi Nonkonveks dan Nonkonkaf Yudasril Yudasril; Berlian Setiawaty; I Gusti Putu Purnaba
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.9218

Abstract

The objective of this research is to show the monotonicity properties of the trapezoid sum sequence in general of nonconvex or nonconcave real valued continuous functions on interval  corresponding to partitions of  obtained by dividing  into equal length subintervals. The decreasing monotony of the trapezoid sum generically does not happen in class of nonconcave functions. The same thing happens when restricted to the monotone nonconcave functions, namely in class of nonconcave increasing or nonconcave decreasing functions. Furthermore, in class of nonconvex functions, the trapezoid sum sequence generically does not increasing, as well as in class of increasing nonconvex or decreasing nonconvex functions.
Syarat Perlu atau Cukup F-bounded di dalam Ruang Metrik-α Fuzzy Lukman Zicky; Mahmud Yunus
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.12327

Abstract

Metrics have an important role in mathematics, both in analysis as well as applications. One of the new concepts of metric space is fuzzy -metric space. This metric space is an expansion of the fuzzy metric space by adding  generator. In this paper, we discuss characterization of F-bounded in the fuzzy -metric space. The property of F-bounded is obtained from the compact subset of a given universe set. This characteristic has been discussed by Changqing and Kedian in Hausdorff fuzzy metric spaces. In this paper, the necessary and sufficient conditions are obtained so that the fuzzy  -metric space satisfies the properties of F-bounded.
Analisis Pengaruh Covid-19 Dan Pembatasan Sosial Berskala Besar (PSBB) Terhadap Fluktuasi IHSG Halwa Annisa Khoiri; Wildanul Isnaini
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.7717

Abstract

Covid-19 is a global disaster that affects various aspects, one of which has an impact on the economy. One of the indicators of economic stability is the Jakarta Composite Index (JCI). During the Covid-19 pandemic, the JCI fluctuated because many investors withdrew their money and switched to safe heaven investment. One example of safe heaven investment is gold, so in this study, the prediktort variables used were the price of gold, the rupiah exchange rate, the number of Covid-19 patients, and the status of the PSBB. The PSBB status used is the implementation of PSBB in DKI Jakarta using three periods, namely, pre-PSBB, PSBB, and post-PSBB (new normal era). Based on the results of the analysis, the variables that significantly influence the fluctuation of the JCI are all prediktort variables with a R2 value of 71.1%. So it can be concluded that the model formed is suitable for predicting the JCI value, as well as the selected prediktort variables, can explain the variation of the JCI by 71.1%. From this significant variable, it can also be used as an alternative in investment during a pandemic like now.
Masalah Invers Pada Homogenisasi Periodik Persamaan Hamilton-Jacobi Made Benny Prasetya Wiranata
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.9627

Abstract

Persamaan Hamilton-Jacobi muncul dan berkembang dari masalah kontrol optimal pada bidang ekonomi. Eksistensi dan ketunggalan solusi lemah untuk masalah nilai awal persamaan Hamilton-Jacobi telah lama diselidiki dan dibuktikan keberadaannya. Selanjutnya, penelitian terkait persamaan Hamilton-Jacobi berkembang untuk menyelidiki solusi masalah asimptot persamaan Hamilton-Jacobi yang sekarang dikenal dengan homogenisasi periodik persamaan Hamilton-Jacobi. Pada paper ini dibahas masalah invers pada homogenisasi periodik persamaan Hamilton-Jacobi dimensi satu. Masalah invers ini menyelidiki keterkaitan antara Hamiltonian dan effective Hamiltonian yang bersesuaian secara terbalik. Pertama-tama, diberikan Hamiltonian ????????(????,????)=????(????)????????(????),????=1,2. Masing-masing Hamiltonian ????????(????,????) diketahui berkorespondensi dengan effective Hamiltonian ????????̅̅̅ melalui masalah sel (cell problems). Selanjutnya diselidiki keterkaitan antara kedua potensial ???????? jika diketahui kedua effective Hamiltonian yang bersesuaian ekuivalen. Lebih lanjut, diperoleh bahwa jika effective Hamiltonian ????1̅̅̅̅≡ ????2̅̅̅̅ maka ????1 bernilai konstan jika ????2 merupakan fungsi konstan, lebih khususnya ????1≡????2. Selain itu, jika ????1≤????2 dan (????−1)′ merupakan fungsi tak negatif maka ????1≡????2. Kedua hasil tersebut menggambarkan kaitan antara distribusi kedua potensial dengan effective Hamiltoniannya.
Front Cover Vol.19 No.1 2022 Limits Editor
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.13127

Abstract

Ruang Barisan Orlicz dan Ruang Dualnya Haryadi Haryadi; Burhanudin Arif Nurnugroho
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.8114

Abstract

Di dalam makalah ini akan dikaji sifat-sifat ruang barisan Orlicz l. Selanjutnya, akan diselidiki karakteristik ruang dual ruang barisan Orlicz dan keterkaitannya dengan ruang barisan yang dibangun oleh pasangan fungsi Orlicz komplementernya. Untuk mencapai tujuan tersebut pada ruang barisan Orlicz l akan digunakan norma Luxemburg dan norma-. Dengan menggunakan kedua norma, karakterisasi ruang barisan Orlicz  berhasil ditelaah. Hasil-hasil yang lebih khusus ditelaah untuk fungsi Orlicz yang memenuhi kondisi-2. Secara umum, ruang dual ruang barisan Orlicz merupakan himpuan bagian ruang barisan yang dibangun oleh pasangan fungsi Orlicz komplementernya. Lebih lanjut, untuk fungsi Orlicz yang memenuhui kondisi-2, ruang dual ruang barisan Orlicz merupakan perumuman di ruang barisan lp dengan 1<p<∞.  In this paper first, we examine some properties of the sequence Orlicz space .  Then, we examined the characteristics of the dual space of the sequence space. The relation of the dual space and the sequence generated by its complementary Orlicz function are examined. We use the Luxemburg norm and the -norm to investigate the space. Some properties of the space are found, and the results for the Orlicz function that satisfies -condition are given. Generally, the dual space is the subspace of the sequence generated by its complementary Orlicz function. For the Orlicz function that satisfies -condition, the dual space is generalization of the dual in the space   for  
Pengaruh Inflasi terhadap Strategi Optimal Investasi dan Konsumsi dengan Model Stokastik Dara Irsalina; Retno Budiarti; I Gusti Putu Purnaba
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.9987

Abstract

The aim of this study is to investigate an optimal investment-consumption strategy under inflation rate with interest rate is described by Cox-Ingersol-Ross (CIR) model and volatility of the stock price is defined by Heston’s volatility model. A dynamic programming principle is used to obtain a Hamilton Jacobi Bellman (HJB) equation for the value function and choose a power utility function as utility function. The explicit solution of optimal investment and consumption are acquired with using separate variable and approach variable technique. The parameter’s values are approached by Euler-Maruyama method and Ordinary Least Square (OLS) method. Assumed that the portfolio of the investor contains a risk-free asset and a risk asset. Monthly historical data of TLK stock is used as risk asset and monthly historical data of BI 7-Day (Reverse) Repo Rate (BI7DRR) is used as risk-free asset, we obtain that the proportion of investment in stock is directly proportional to return of stock and the inflation rate does not have an impact on proportion investment in the stock. Meanwhile the optimal consumption of wealth is directly proportional to investor’s wealth and inversely proportional with inflation rate, which is the investor should consume less money of his wealth when the inflation rate increases.
Editor Limits Limits Editor
Limits: Journal of Mathematics and Its Applications Vol 19, No 1 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i1.13128

Abstract

Page 1 of 2 | Total Record : 12