cover
Contact Name
Dessy Ariyanti
Contact Email
dessy.ariyanti@che.undip.ac.id
Phone
+62247460058
Journal Mail Official
j.reaktor@che.undip.ac.id
Editorial Address
Department of Chemical Engineering, Diponegoro University Jl. Prof. Soedarto SH Tembalang Semarang 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Reaktor
Published by Universitas Diponegoro
Reaktor invites contributions of original and novel fundamental research. Reaktor publishes scientific study/ research papers, industrial problem solving related to Chemical Engineering field as well as review papers. The journal presents paper dealing with the topic related to Chemical Engineering including: Transport Phenomena and Chemical Engineering Operating Unit Chemical Reaction Technique, Chemical Kinetics, and Catalysis Designing, Modeling, and Process Optimization Energy and Conversion Technology Thermodynamics Process System Engineering and products Particulate and emulsion technologies Membrane Technology Material Development Food Technology and Bioprocess Waste Treatment Technology
Articles 530 Documents
HIDROKONVERSI KATALITIK RESIDU MINYAK BUMI: PENGARUH TEMPERATUR DAN WAKTU REAKSI Hartiniati Hartiniati
Reaktor Volume 10, Nomor 2, Desember 2006
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (219.777 KB) | DOI: 10.14710/reaktor.10.2.82-87

Abstract

Uji terhadap proses hidro-konversi katalitik residu petroleum dari unit refinery Plaju, Palembang dilakukan dengan menggunakan reaktor-batch berpengaduk (autoclave) 1 liter pada kondisi standar: tekanan awal hidrogen 12 MPa dan rasio sulfur terhadap besi = 2.0. Studi dilakukan untuk melihat pengaruh perubahan temperatur dari 430, 450, dan 470oC serta waktu reaksi 30, 60, 90 menit terhadap distribusi produk dan jumlah konsumsi hidrogen. Hasil studi menunjukkan bahwa produk minyak, CO, CO2 dan hidrokarbon naik secara signifikan dengan naiknya temperatur dan waktu reaksi, namun sebaliknya produk cair bawah (liquid bottom) cenderung turun. Pada kajian ini juga ditemukan bahwa konsumsi hidrogen naik dengan bertambahnya produk minyak, sehingga penggunaan hidrogen lebih efisien. Dengan demikian disimpulkan bahwa proses hidro-konversi katalitik dapat diterapkan pada residue petroleum untuk meningkatkan nilai tambah/kualitasnya. 
Back Matter Vol 18 No. 01 March 2018 Widayat, W
Reaktor Volume 18 No. 1 March 2018
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (668.016 KB) | DOI: 10.14710/reaktor.18.1.x-xx

Abstract

Matter of Reaktor in back
PEMODELAN PINDAH PANAS PADA PROSES STERILISASI GUDEG KALENGAN Asep Nurhikmat; Bandul Suratmo; Nursigit Bintoro; S Suharwadji
Reaktor Volume 15, No.1, APRIL 2014
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (300.225 KB) | DOI: 10.14710/reaktor.15.1.64-72

Abstract

Telah dilakukan penelitian pemodelan pindah panas pada proses sterilisasi gudeg kalengan. Tujuan penelitian adalah untuk mengetahui fenomena pindah panas gudeg kalengan selama sterilisasi. Penelitian dilakukan pada suhu sterilisasi 111; 121 dan 131oC dengan lama sterilisasi 10; 20 dan 30 menit. Pengamatan dilakukan terhadap nilai F dan tekstur bahan. Simulasi model dilakukan dengan menggunakan MATLAB versi R2010a. Simulasi menghasilkan nilai difusivitas panas (α) bahan sekitar 1.0443x10-1 mm2/s, nilai koefisien transfer panas (h) adalah 4.1366x10-2 W/mm2/s dengan sse sekitar 5.4634x102. Selama proses sterilisasi terjadi kenaikan nilai F dan penurunan tekstur. Perlakuan yang paling optimal adalah perlakuan 121oC selama 20 menit dengan nilai F sekitar 4,32 menit.
The Effect Of Reynolds Number At Fluid Flow In Porous Media L. Buchori; M. D. Supardan; Y. Bindar; D. Sasongko; IGBN Makertihartha
Reaktor Volume 6 No. 2 Desember 2002
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6489.39 KB) | DOI: 10.14710/reaktor.6.2.48-55

Abstract

In packed bed catalytic reactor, the fluid flow phenomena are very complicated because of the fluid and solid particles interaction to dissipate the energy. The governing equations need to be developed to the forms of specific models. Flows modeling of fluid flow in porous media with thw absence of the convection and viscous terms have been considerably developed such as Darcy, Brinkman, Forchheimer, Ergun, Liu, et.al and Liu and Masliyah models. These equations usually are called shear factor model. Shear factor is determined by the flow regime, porous media characteristics and fluid properties. It is true that these models are limited to condition whether the models can be applied. Analytical solution for the model types above is available only for simple one-dimentionalcases. For two or three-dimentional problem, numerical solution is the only solution. The present work is aimed to developed a two-dimentional numerical modeling flow in porous media by including the convective and viscous term. The momentum lost due  to flow and porous material interaction is modeled using the available Brinkman-Forchheimer and Liu and Masliyah equations. Numerical method to be used is finite volume method. This method is suitable for the characteristic of fluid flow in porous media which is averaged by a volume base. The effect of the solid and fluid interaction  in porous media is the basic principle of the flow model in porous media. The momentum and continuity  equations are solved for two-dimentional cylindrical coordinate. The result were validated with the experimental data . the result show a good agreement in their trend between Brinkman-Forchheimer equqtion with the Stephenson and Stewart (1986) and Liu and Masliyah equation with Kufner and Hoffman (1990) experimental data.Keywords : finite volume method, porous media, Reynold number, shear factor
HIDRODISTILASI MINYAK JAHE (Zingiber officinale Rosc.) Muhamad Dani Supardan; Ruslan Ruslan; Satriana Satriana; Normalina Arpi
Reaktor Volume 12, Nomor 4, Desember 2009
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (625.598 KB) | DOI: 10.14710/reaktor.12.4.239 – 244

Abstract

Penelitian tentang penyulingan minyak jahe dengan metode hidrodistilasi menggunakan gelombang ultrasonik telah dilakukan. Variabel proses yang diamati adalah perbandingan pelarut air dan bubuk jahe atau SF rasio (8:1, 10:1, 12:1 dan 14:1) dan temperatur hidrodistilasi (80, 85, 90 dan 95oC). Proses hidrodistilasi dilakukan menggunakan ultrasonic bath dengan frekuensi 37 kHz. Sebagai pembanding dilakukan juga proses hidrodistilasi tanpa bantuan ultrasonik. Minyak jahe yang diperoleh berupa cairan berwarna kuning terang dengan aroma jahe yang khas. Hasil penelitian menunjukkan hidrodistilasi tanpa bantuan ultrasonik hanya dapat mengekstrak 49% minyak atsiri dalam bahan, sedangkan hidrodistilasi dengan bantuan ultrasonik mampu mengekstrak hingga 84% minyak atsiri dalam bahan pada kondisi temperatur 80oC dan SF rasio 12:1. Hasil analisis dengan kromatografi gas menunjukkan komponen dengan komposisi tertinggi dalam minyak jahe hasil hidrodistilasi dengan bantuan ultrasonik adalah Zingiberene. Hasil analisis beberapa parameter terhadap produk menunjukkan minyak jahe sudah memenuhi spesifikasi menurut Standar Nasional Indonesia (SNI) Nomor 06-1312-1998.
Front Matter Reaktor Vol 15 No. 4 Oktober 2015 Widayat, W
Reaktor Volume 15 No.4 Oktober 2015
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (218.945 KB) | DOI: 10.14710/reaktor.15.4.i-vi

Abstract

Pembuatan Serbuk Buah Jeruk Dengan Metode Pengeringan Busa S. Prasetyo
Reaktor Volume 09 No.1 Juni 2005
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6694.988 KB) | DOI: 10.14710/reaktor.9.2.50-57

Abstract

Salah satu produk olahan buahjeruk segar adalah serbuk sari jeruk instan yang dapat diperoleh dengan metode pengeringan busa. Minyak kelapa, dekstri dan tween 80 merupakan bahan aditif yang biasa ditambahkan pada pengeringan usa. Hasil penelitian menunjukkan bahwa kondisi optimum pengeringan busa  diperoleh pada konsentrasi dekstrin 10%, tween 80 0,5% dan minyak kelapa 2% dengan nilai Nc = 1,03 x 10-4 kg/(m2.s), hc = 7,15 x 10-3 Kw/(m2.0C), ky= 6,95 x 10-3 kg/(m2.s), kadar air 0,13% dan kadar vitamin C sebesar 92,89 mg/ 100 g sampel serta waktu pengeringan selama 4 jam. Konsentrasi dekstrin, tween 80 serta interaksinya berpengaruh  secara signifikan terhadap pengeringan busa. Penambahan dekstrin akan memperlambat laju pengeringan sedangkan penambahan tween 80 dan minyak kelapa dapat mempercepat laju pengeringan.Kata kunci : Dekstrin, minyak kelapa, pengeringan busa, sari jeruk instan, tween 80
NANOTECHNOLOGY AN EMERGING NEW TECHNOLOGY FOR INDONESIA PART I. NANOTECHNOLOGY IN GENERAL Ratnawati Ratnawati; anggoro D.D. Anggoro; G.A. Mansoori G.A. Mansoori
Reaktor Volume 10 No. 1 Juni 2006
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.10.1.46-53

Abstract

Nanotechnology is shortly defined as the ability to build micro and macro material and product with atomic precistion. Feynman is considered to be the scientist who put a strong foundation for the development of nanotechnology with his phenomenal speech in 1959 entitled "There's Plenty of Room at the Bottom - An invitation to enter a new field of physics." The invention of scanning tunneling microscope, followed by atomic force microscope, has enabled the world to see atoms and nolecules and opened more possibility for the scientists to develop nanotechnology. Other breakthough in nanotechnology is the discoveries of fullerene, carbon nanotube and diamondoids. Nanotechnology has found various fields of application, such as in biomedical , materials, aerospace, surface science and energy, to name a few, lead by the united States, Europe, and Japan, The technology brings benefits as well as risks to human life. Some of the risks are potentially global in scope. It is why a single, trustworthy, international administration holding controls on the technologyis is urgently needed.
AUTOTHERMAL REFORMING OF OF METHANE TO HYDROGEN PRODUCTION OVER Ni/Al2O3, Co/Al2O3 AND NiO-Co/MgO T. D. Kusworo; A. R. Songip; N. A. S. Amir
Reaktor Volume 08 No.2 Desember 2004
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4799.483 KB) | DOI: 10.14710/reaktor.8.2.63-68

Abstract

Autotherman reforming of methane to hydrogen gas was examined over Co/Al2O3, Ni/Al2O3 and NiO CoO/MgO catalyst. Among the catalyst examined NiO-CoO/MgO catalysts with 24 % metal loading exhibits not only the highest catalyst and selectivity but also remarkable stability. In addition the catalysts ware characterized by nitrogen adsorption (NA) , TPR, and XRD. The catalyst charecteristics is strongly influenced by interaction between support and metal exist. The excellent performance of NiO-CO/MgO resulted from the formation of an ideal solution between NiO, CoO and MgO Keywords : Autothermal reforming of methane, hydrogen production
TRANSESTERIFICATION OF VEGETABLES OIL USING SUBAND SUPERCRITICAL METHANOL Nyoman Puspa Asri; Siti Machmudah; Wahyudiono Wahyudiono; Suprapto Suprapto; Kusno Budikarjono; Achmad Roesyadi; Mitsuru Sasaki; Motonobu Goto
Reaktor Volume 14, Nomor 2, Oktober 2012
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (113.746 KB) | DOI: 10.14710/reaktor.14.2.123-128

Abstract

A benign process, non catalytic transesterification in sub and supercritical methanol method was usedto prepare biodiesel from vegetables oil. The experiment was carried out in batch type reactor (8.8 mlcapacity, stainless steel, AKICO, JAPAN) by changing the reaction condition such as reactiontemperature (from 210°C in subcritical condition to 290°C in supercritical state with of 20°Cinterval), molar ratio oil to methanol (1:12-1:42) and time of reaction (10-90 min). The fatty acidmethyl esters (FAMEs) content was analyzed by gas chromatography-flame ionization detector (GCFID).Such analysis can be used to determine the biodiesel yield of the transesterification. The resultsshowed that the yield of biodiesel increases gradually with the increasing of reaction time atsubcritical state (210-230oC). However, it was drastically increased at the supercritical state (270-290oC). Similarly, the yield of biodiesel sharply increased with increasing the ratio molar of soy oilmethanolup to 1:24. The maximum yield 86 and 88% were achieved at 290oC, 90 min of reaction timeand molar ratio of oil to methanol 1:24, for soybean oil and palm oil, respectively.Proses transesterifikasi non katalitik dengan metanol sub dan superkritis,merupakan proses yang ramah lingkungan digunakan untuk pembuatan biodiesel dari minyak nabati.Percobaan dilakukan dalam sebuah reaktor batch (kapasitas 8,8 ml, stainless steel, AKICO, JAPAN),dengan variabel kondisi reaksi seperti temperatur reaksi (dari kondisi subkritis 210°C-kondisisuperkritis 290°C dengan interval 20°C), rasio molar minyak-metanol (1:12-1:42) dan waktu reaksi(10-90 menit). Kandungan metil ester asam lemak (FAME) dianalisis dengan kromatografi gasdengan detektor FID (GC-FID). Hasil Analisis tersebut dapat digunakan untuk menentukan yieldbiodiesel dari proses transesterifikasi. Hasil penelitian menunjukkan bahwa yield biodiesel meningkatsecara perlahan dengan meningkatnya waktu reaksi pada keadaan subkritis (210-230oC). Namun,yield biodiesel meningkat secara drastis pada kondisi superkritis (270-290oC). Demikian pula halnyadengan rasio molar minyak kedelai-metanol, dimana hasil biodiesel meningkat tajam denganmeningkatnya rasio molar minyak-metanol hingga 1:24. Yield maksimum dicapai pada 290oC, waktureaksi 90 menit dan rasio molar minyak terhadap metanol 1:24, yaitu sebesar 86% untuk minyakkedelai dan 88% untuk minyak sawit. 

Filter by Year

1999 2025


Filter By Issues
All Issue Volume 25 No.2 August 2025 Volume 25 No.1 April 2025 Volume 24 No.3 December 2024 Volume 24 No.2 August 2024 Volume 24 No.1 April 2024 Volume 23 No.3 December 2023 Volume 23 No.2 August 2023 Volume 23 No.1 April 2023 Volume 22 No. 3 December 2022 Volume 22 No.2 August 2022 Volume 22 No. 1 April 2022 Volume 21 No.4 December 2021 Volume 21 No. 3 September 2021 Volume 21 No. 2 June 2021 Volume 21 No. 1 March 2021 Volume 20 No.4 December 2020 Volume 20 No.3 September 2020 Volume 20 No.2 June 2020 Volume 20 No.1 March 2020 Volume 19 No. 4 December 2019 Volume 19 No. 3 September 2019 Volume 19 No. 2 June 2019 Volume 19 No. 1 March 2019 Volume 18 No. 4 December 2018 Volume 18 No. 3 September 2018 Volume 18 No. 2 June 2018 Volume 18 No. 1 March 2018 Volume 17 No. 4 Desember 2017 Volume 17 No. 3 September 2017 Volume 17 No. 2 Juni 2017 Volume 17 No.1 Maret 2017 Volume 16 No.4 Desember 2016 Volume 16 No.3 September 2016 Volume 16 No. 2 Juni 2016 Volume 16 No.1 Maret 2016 Volume 15 No.4 Oktober 2015 Volume 15 No.3 April 2015 Volume 15, No.2, OKTOBER 2014 Volume 15, No.1, APRIL 2014 Volume 14, No. 4, OKTOBER 2013 Volume 14, No. 3, APRIL 2013 Volume 14, Nomor 2, Oktober 2012 Volume 14, Nomor 1, April 2012 Volume 13, Nomor 4, Desember 2011 Volume 13, Nomor 3, Juni 2011 Volume 13, Nomor 2, Desember 2010 Volume 13, Nomor 1, Juni 2010 Volume 12, Nomor 4, Desember 2009 Volume 12, Nomor 3, Juni 2009 Volume 12, Nomor 2, Desember 2008 Volume 12, Nomor 1, Juni 2008 Volume 11, Nomor 2, Desember 2007 Volume 11, Nomor 1, Juni 2007 Volume 10, Nomor 2, Desember 2006 Volume 10 No. 1 Juni 2006 Volume 09 No. 02 Desember 2005 Volume 09 No.1 Juni 2005 Volume 08 No.2 Desember 2004 Volume 08 No.1 Juni 2004 Volume 07 No.2 Desember 2003 Volume 07 No. 1 Juni 2003 Volume 6 No. 2 Desember 2002 Volume 6 No. 1 Juni 2002 Volume 5 No.2 Desember 2001 Volume 5 No. 1 Juni 2001 Volume 3 No.1 Desember 1999 More Issue