cover
Contact Name
Dessy Ariyanti
Contact Email
dessy.ariyanti@che.undip.ac.id
Phone
+62247460058
Journal Mail Official
j.reaktor@che.undip.ac.id
Editorial Address
Department of Chemical Engineering, Diponegoro University Jl. Prof. Soedarto SH Tembalang Semarang 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Reaktor
Published by Universitas Diponegoro
Reaktor invites contributions of original and novel fundamental research. Reaktor publishes scientific study/ research papers, industrial problem solving related to Chemical Engineering field as well as review papers. The journal presents paper dealing with the topic related to Chemical Engineering including: Transport Phenomena and Chemical Engineering Operating Unit Chemical Reaction Technique, Chemical Kinetics, and Catalysis Designing, Modeling, and Process Optimization Energy and Conversion Technology Thermodynamics Process System Engineering and products Particulate and emulsion technologies Membrane Technology Material Development Food Technology and Bioprocess Waste Treatment Technology
Articles 527 Documents
Breaking Boundaries in Renewable Energy: Portable Bio-Photovoltaic Systems for the IoT Era Nur, Muhamad Maulana Azimatun; Dellarohita, Shinta Justicia; Syakira, Salsabila Fara
Reaktor Volume 24 No.3 December 2024
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.24.3.94-101

Abstract

Bio-photovoltaic (BPV) technology represents a promising innovation in renewable energy by harnessing photosynthetic microorganisms, such as microalgae and cyanobacteria, to convert solar energy into electricity. This review examines recent advancements in BPV systems, with a focus on portable applications, immobilization techniques, and hybrid system integrations. The study highlights the critical role of advanced materials, such as graphene and carbon nanotubes, in improving electron transfer efficiency and system performance. Additionally, immobilization strategies using natural polysaccharides like sodium alginate and agar are discussed for their contributions to system stability and scalability. Portable BPV systems have emerged as sustainable solutions for decentralized energy needs, including environmental monitoring and IoT-based applications. Despite their potential, challenges remain in optimizing energy output, improving long-term stability, and reducing production costs. Future directions include the integration of nanotechnology, genetic engineering of microorganisms, and hybrid BPV-solar systems to enhance overall efficiency and expand application scope. This review underscores the transformative potential of BPV technology in achieving sustainable energy goals while addressing global challenges in energy access and environmental conservation. With continued innovation and multidisciplinary collaboration, BPV systems could play a vital role in transitioning toward a cleaner and more resilient energy future.Keywords: Bio-Photovoltaic; Microalgae; Renewable Energy; Portable Systems; Hybrid BPV-Solar Systems; Nanotechnology Integration.
Adsorption Capacity of Magnetic Activated Carbon Derived from Snake Fruit (Salacca zalacca) Seeds to Cd(II): Characteristics and Isotherm Model Kusdarini, Esthi; Budianto, Agus; Kusuma, Maritha Nilam; Atiyatussa'adah, Eva
Reaktor Volume 25 No.1 April 2025
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.25.1.%p

Abstract

Salak seeds are an agricultural waste that has the potential to be converted into magnetic activated carbon (MAC). The resulting MAC can be utilized for wastewater treatment, particularly in the adsorption of heavy metals. This study develops a method for producing MAC by forming activated carbon using a chemical activator without physical activation, chosen to reduce energy consumption. The activated carbon is then modified with Fe3O4 composite to render it magnetic and reusable. The objectives of this study are to 1) determine the optimal chemical activator concentration, 2) characterize magnetic activated carbon, 3) evaluate the adsorption capacity of MAC for Cd(II) in wastewater, 4) obtain an adsorption isotherm model of MAC for Cd(II) using the Langmuir and Freundlich models, and 5) analyze the surface morphology and elemental composition of MAC. Chemical activation was performed using an HCl-H3PO4 mixture with equal concentrations in a 1:1 volume ratio, with variable concentrations of 0.55, 1.05, 1.55, 2.05, and 2.55 M. MAC's characteristics and adsorption capacity were analyzed using proximate analysis, BET, SEM-EDX, and AAS. The results showed that: 1) the optimal HCl-H3PO4 concentration was 2.05 M, 2) MAC contained 1% moisture, 21.88% volatile matter, 38% ash, 39.13% fixed carbon, iodine number of 1218.24 mg/g, surface area of 175.604 m2/g, and an average pore volume of 26.8093 cc/g, 3) MAC adsorbed Cd(II) from wastewater with an efficiency of 80.12 – 87.75%, 4) the Langmuir isotherm model yielded R2 = 0.9847, qm = 35.0877 mg/g, and b = 0.0285 L/mg, whereas the Freundlich model yielded R2 = 0.9729, n = 1.5881, and kf = 7.6701 mg/g, and 5) MAC exhibited evenly distributed pores and contained dominant elements Fe (30.26%), C (29.08%), O (24.59%), Na (11.27%), with traces of Mg, Al, Mo, and Cl.
Catalytic cracking of pyrolytic oil derived from arabica coffee parchment using Ni-NZ catalysts Nisa, Syarifah Rahimatun; Setiawan, Adi; Syam, Azhari Muhammad; Rahmawati, Cut Aja; Rizkina, Shafira
Reaktor Volume 25 No.1 April 2025
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.25.1.%p

Abstract

The potential of bio-oil derived from biomass has garnered significant attention among researchers due to its prospects as an environmentally friendly fuel alternative. This study utilized bio-oil extracted from Arabica coffee parchment sourced from coffee plantations in Bener Meriah Regency, Aceh, Indonesia. Nickel metal was used as a catalyst impregnated into natural zeolites to accelerate the reaction rate in the catalytic cracking method. The catalyst was prepared using the wet impregnation method, with natural zeolites first activated using 1 N HCl. During the impregnation process, stirring was conducted for 6 hours at 25 °C, followed by drying in an oven at 115 °C for 12 hours, and calcination at 500°C for 4 hours. The resulting catalyst was then characterized using TGA, XRD, and SEM analyses to determine the optimal catalyst properties. Based on XRD analysis across various concentrations, curves were observed at angles 2θ ≈ 37° and 44°, which are presumed to be peaks of nickel catalysts on the zeolite surface. In this study, the Ni-NZ catalyst concentration was varied to 15%, 20%, and 25% (w/w). GC-MS chromatogram results indicated that the highest formation of bio-benzene occurred at a 25% catalyst concentration with a residence time of 2 hours, yielding 9.28%. The findings suggest that Ni-NZ catalysts are technically capable of producing aromatic hydrocarbons from the pyrolytic oil of coffee parchment, which can be utilized as a biofuel component
Characterization of Cellulose Extracted from Garlic Waste via Alkaline Treatment and Its Effect on Yield Fahni, Yunita; Atro Auriyani, Wika; Amelia, Devita; Rizki Safitra, Edwin; Riana Saputri, Desi; Damayanti, Damayanti; Sanjaya, Andri; Christian Surya Atmaja, Michael; Nyoman Wiswa Kananda, I; Surya Ningrum, Riska; Mahardika, Melbi
Reaktor Volume 25 No.1 April 2025
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.25.1.%p

Abstract

Garlic waste—including straws, bulbs, and skins—is an agricultural residue contributing to household waste. Rich in cellulose, garlic waste can be converted into various value-added products through proper processing. In this study, cellulose was extracted from garlic waste using alkaline treatment to investigate the influence of sodium hydroxide (NaOH) concentration on the characteristics of the resulting cellulose. NaOH solutions with varying concentrations of 2%, 7%, 14%, and 20% were used during the alkalization process. FTIR spectra revealed transmittance changes with increasing concentration, indicating a reduction in lignin content. The resulting cellulose exhibited needle-like structures, and garlic fibers with amorphous morphology showed cleaner surfaces at a NaOH concentration of 20%. The highest extract yield from the alkalization process was 62.7%, achieved at a NaOH concentration of 2%. These findings demonstrate the potential of garlic waste as a cellulose source and its applicability for producing derivative products such as thin films, optical fibers, and bioplastic raw materials.
Adsorption Photocatalytic Removal of Rhodamine B using Dodecyl Dimethyl Betaine (BS12) Intercalated Silver Tetratungstate-Bentonite composites: Effect of Ag and Surfactant Loading, pH, and its Subsequent Economic Feasibility Sumardiono, Siswo; Setiawan, Fajar Kasih; Jos, Bakti; Cahyono, Heri
Reaktor Volume 25 No.1 April 2025
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.25.1.%p

Abstract

The potential of silver tetratungstate-doped bentonite intercalated with zwitterionic surfactant for removing Rhodamine B (RhB) was evaluated by comparing three composites, namely, AB (acid-activated bentonite), AB impregnated with Ag8W4O16 photocatalyst (Ag@AB), and Ag@AB intercalated with dodecyl dimethyl betaine (BS12) surfactant (Ag@OAB) with respect to their photocatalytic adsorption performance. The AB composite was prepared by treating natural bentonite with hydrochloric acid (HCl). Next, Ag@AB was synthesized by wet impregnation of Ag₈W₄O₁₆ onto AB. Lastly, the Ag@OAB was formed by intercalating the BS12 surfactant onto the Ag@AB composite. The morphology of the composite structures was characterized using Scanning Electron Microscopy (SEM). The addition of 4% Ag (w/w) tetratungstate W4O16 and 50% CEC BS12 to AB produced RhB removal percentages of 66% and 59%, respectively, compared to 65% for AB. The maximum removal percentage was achieved at pH 4 for the AB, Ag@AB, and Ag@OAB composites with RhB removal percentages of 67%, 71%, and 44%, respectively. The AB composite showed the highest regenerative ability compared to Ag@AB and Ag@OAB, with AB maintaining RhB removal at 70% after five regeneration cycles, while Ag@AB and Ag@OAB only reached four and three regeneration cycles. The total production cost of AB is fourteen to sixteen times lower than that of Ag@AB and Ag@OAB composites. In summary, the impregnation of the Ag₈W₄O₁₆ photocatalyst onto AB, resulting in the Ag@AB composite, increases the RhB removal efficiency compared to pristine AB. In contrast, the intercalation of the BS12 surfactant in Ag@OAB composite led to a decrease in RhB removal efficiency, resulting in the lowest performance among the three composites.
Functional Properties of Heat-Moisture-Treated Arrowroot (Maranta arundinacea L.) Flour for Instant Porridge Application Livia Tadius, Melissa; Arum Anugrahati, Nuri; J.N Parhusip, Adolf
Reaktor 2025: Just Accepted and Article in Press
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.0.0.%p

Abstract

Instant porridge, usually made from high glycemic index rice flour, can be substituted with arrowroot flour, which has a lower glycemic index. Heat moisture treatment (HMT) can enhance the water absorption capacity of arrowroot flour. The research aims to determine the effect of HMT temperature and time on the physicochemical characteristics and functional properties of arrowroot flour, to identify the optimal HMT conditions based on water absorption capacity, and to determine the physicochemical characteristics and functional properties of instant arrowroot porridge with the selected HMT treatment.   The HMT method was conducted at temperatures of 100°C, 110°C, and 120°C for 30 minutes, 60 minutes, and 90 minutes. The experimental design is a Completely Randomized Design (CRD) with two factors arranged in a 3 × 3 factorial scheme, with three replications per treatment. The preliminary stage involves the production of arrowroot flour, the primary research phase I involves the modification of arrowroot flour using HMT, and the primary research phase II involves the production of instant arrowroot porridge. The experiment was limited to a laboratory scale due to equipment capacity, especially the oven used for HMT, which restricted batch size and may affect scalability. The results showed that HMT can increase yield, water absorption capacity, total dietary fiber content, and resistant starch content, while decreasing moisture content, total carbohydrate content, and glycemic carbohydrate. The selected HMT arrowroot flour treatment was at 110°C for 60 minutes with the highest water absorption capacity (2.11 g/g). The characteristics of instant arrowroot porridge include 11.03% moisture content, 2.32 g/g water absorption capacity, 2.69 ml/g rehydration capacity, 25.89 seconds/g rehydration time, 70.70% total carbohydrate content, 6.60% dietary fiber content, 64.10% glycemic carbohydrate, and 5.62% resistant starch content. This study shows that HMT-modified arrowroot flour could be a healthier alternative to rice flour in food products, offering a lower glycemic index. The improved functional properties, such as higher water absorption and more dietary fiber, make it suitable for products like instant porridge, which can help people manage blood sugar levels.
Incorporating silica synthesized from rice husk ash into a calcium oxide catalyst for biodiesel production Alhanif, Misbahudin; Mustafa, Mustafa; Kumoro, Andri Cahyo; Wahyono, Yoyon; Zaim, Hanif Fawwaz; Zahra, Nurul Afifah
Reaktor 2025: Just Accepted and Article in Press
Publisher : Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/reaktor.0.0.%p

Abstract

Biodiesel represents a promising renewable energy alternative to either substitute or be blended with conventional diesel, offering advantages such as a high cetane number, reduced sulfur (SOx) and CO₂ emissions, and greater environmental sustainability. The application of calcium oxide (CaO) as a basic catalyst in biodiesel production has been extensively reported. However, its catalytic performance is limited by its sensitivity to moisture, which can negatively affect the reaction rate. In addition, some of the Ca2+ ions in the catalyst can dissolve in the mixture of biodiesel and glycerol, causing product contamination. This study aims to combine a CaO catalyst from marble powder with sulfonated silica (SiO2) from rice husk ash (RHA) to enhance the distribution of catalyst particles, reduce crystallinity, and increase the surface area of the catalyst. This study was conducted through chemical and thermal activation of SiO2 from RHA, sulfonation of SiO2, thermal activation of CaO from marble powder waste, and impregnation of CaO/SiO2 catalyst with variations in CaO/SiO2 composition (25%:75%, 50%:50%, 75%:25%). The results showed that the purity of SiO2 and CaO obtained through chemical and thermal activation was 93.67% and 99.13%, respectively. The sulfonation process on SiO2 successfully added –SO3 groups at 36.5%, which supported the formation of acid sites on the catalyst. Characterization showed that the surface morphology was composed of particles measuring 2–8 µm with a dominant amorphous structure. The addition of SiO2 gave rise to new crystal peaks but decreased the crystal intensity, especially at the 50%:50% composition. The composition of CaO/SiO2 at 75%:25% showed the best physical properties with a surface area of 22.24 m²/g, a pore volume of 65.29 mm³/g, and a pore diameter of 11.74 nm, indicating high potential as a bifunctional catalyst for biodiesel esterification–transesterification.

Filter by Year

1999 2025


Filter By Issues
All Issue Volume 25 No.1 April 2025 2025: Just Accepted and Article in Press Volume 24 No.3 December 2024 Volume 24 No.2 August 2024 Volume 24 No.1 April 2024 Volume 23 No.3 December 2023 Volume 23 No.2 August 2023 Volume 23 No.1 April 2023 Volume 22 No. 3 December 2022 Volume 22 No.2 August 2022 Volume 22 No. 1 April 2022 Volume 21 No.4 December 2021 Volume 21 No. 3 September 2021 Volume 21 No. 2 June 2021 Volume 21 No. 1 March 2021 Volume 20 No.4 December 2020 Volume 20 No.3 September 2020 Volume 20 No.2 June 2020 Volume 20 No.1 March 2020 Volume 19 No. 4 December 2019 Volume 19 No. 3 September 2019 Volume 19 No. 2 June 2019 Volume 19 No. 1 March 2019 Volume 18 No. 4 December 2018 Volume 18 No. 3 September 2018 Volume 18 No. 2 June 2018 Volume 18 No. 1 March 2018 Volume 17 No. 4 Desember 2017 Volume 17 No. 3 September 2017 Volume 17 No. 2 Juni 2017 Volume 17 No.1 Maret 2017 Volume 16 No.4 Desember 2016 Volume 16 No.3 September 2016 Volume 16 No. 2 Juni 2016 Volume 16 No.1 Maret 2016 Volume 15 No.4 Oktober 2015 Volume 15 No.3 April 2015 Volume 15, No.2, OKTOBER 2014 Volume 15, No.1, APRIL 2014 Volume 14, No. 4, OKTOBER 2013 Volume 14, No. 3, APRIL 2013 Volume 14, Nomor 2, Oktober 2012 Volume 14, Nomor 1, April 2012 Volume 13, Nomor 4, Desember 2011 Volume 13, Nomor 3, Juni 2011 Volume 13, Nomor 2, Desember 2010 Volume 13, Nomor 1, Juni 2010 Volume 12, Nomor 4, Desember 2009 Volume 12, Nomor 3, Juni 2009 Volume 12, Nomor 2, Desember 2008 Volume 12, Nomor 1, Juni 2008 Volume 11, Nomor 2, Desember 2007 Volume 11, Nomor 1, Juni 2007 Volume 10, Nomor 2, Desember 2006 Volume 10 No. 1 Juni 2006 Volume 09 No. 02 Desember 2005 Volume 09 No.1 Juni 2005 Volume 08 No.2 Desember 2004 Volume 08 No.1 Juni 2004 Volume 07 No.2 Desember 2003 Volume 07 No. 1 Juni 2003 Volume 6 No. 2 Desember 2002 Volume 6 No. 1 Juni 2002 Volume 5 No.2 Desember 2001 Volume 5 No. 1 Juni 2001 Volume 3 No.1 Desember 1999 More Issue