cover
Contact Name
Dessy Ariyanti
Contact Email
dessy.ariyanti@che.undip.ac.id
Phone
+62247460058
Journal Mail Official
j.reaktor@che.undip.ac.id
Editorial Address
Department of Chemical Engineering, Diponegoro University Jl. Prof. Soedarto SH Tembalang Semarang 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Reaktor
Published by Universitas Diponegoro
Reaktor invites contributions of original and novel fundamental research. Reaktor publishes scientific study/ research papers, industrial problem solving related to Chemical Engineering field as well as review papers. The journal presents paper dealing with the topic related to Chemical Engineering including: Transport Phenomena and Chemical Engineering Operating Unit Chemical Reaction Technique, Chemical Kinetics, and Catalysis Designing, Modeling, and Process Optimization Energy and Conversion Technology Thermodynamics Process System Engineering and products Particulate and emulsion technologies Membrane Technology Material Development Food Technology and Bioprocess Waste Treatment Technology
Articles 530 Documents
Energy Harvesting from Sugarcane Bagasse Juice using Yeast Microbial Fuel Cell Technology Marcelinus Christwardana; Linda Aliffia Yoshi; J. Joelianingsih
Reaktor Volume 21 No. 2 June 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (636.167 KB) | DOI: 10.14710/reaktor.21.2.52-58

Abstract

This study demonstrates the feasibility of producing bioelectricity utilizing yeast microbial fuel cell (MFC) technology with sugarcane bagasse juice as a substrate. Yeast Saccharomyces cerevisiae was employed as a bio-catalyst in the production of electrical energy. Sugarcane bagasse juice can be used as a substrate in MFC yeast because of its relatively high sugar content. When yeast was used as a biocatalyst, and Yeast Extract, Peptone, D-Glucose (YPD) Medium was used as a substrate in the MFC in the acclimatization process, current density increased over time to reach 171.43 mA/m2 in closed circuit voltage (CCV), maximum power density (MPD) reached 13.38 mW/m2 after 21 days of the acclimatization process. When using sugarcane bagasse juice as a substrate, MPD reached 6.44 mW/m2 with a sugar concentration of about 5230 ppm. Whereas the sensitivity, maximum current density (Jmax), and apparent Michaelis-Menten constant (????????????????????) from the Michaelis-Menten plot were 0.01474 mA/(m2.ppm), 263.76 mA/m2, and 13594 ppm, respectively. These results indicate that bioelectricity can be produced from sugarcane bagasse juice by Saccharomyces cerevisiae.Keywords: biomass valorization, biofuel cell, acclimatization, maximum power density, Michaelis-Menten constant
Thermal integration analysis and improved configuration for multiple effect evaporator system based on pinch analysis Indra Riadi; Zulfan Adi Putra; Heri Cahyono
Reaktor Volume 21 No. 2 June 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2144.49 KB) | DOI: 10.14710/reaktor.21.2.74-93

Abstract

Pinch analysis for a sugar plant production capacity 4000 TCD has been carried out to reduce its energy consumptions. The plant has ten evaporators that can be configured to several multiple effect evaporators. It has been running with five-effect evaporator (quintuple) scheme. To maximize energy utilization within the plant, three multiple effect evaporator schemes were evaluated. They are triple effect evaporator, quadruple effect evaporator, and quintuple effect evaporator as the benchmark. The result shows that the quintuple effect evaporator yields the highest energy efficiency by about 10%. Options to achieve such target is to use low pressure steam only for the first effect and to use steam bleeding from the first effect to heat a tertiary juice heater. With this proposed scenario, sugar dryer, wash water RVF unit and wash water HGF unit no longer need external steam for its operation.
Synthesis and Characterization of Polymeric Surfactant from Palm Oil Methyl Ester and Vinyl Acetate for Chemical Flooding Agam Duma Kalista Wibowo; Pina Tiani; Lisa Aditya; Aniek Sri Handayani; Marcelinus Christwardana
Reaktor Volume 21 No. 2 June 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (505.698 KB) | DOI: 10.14710/reaktor.21.2.65-73

Abstract

Surfactants for enhanced oil recovery are generally made from non-renewable petroleum sulfonates and their prices are relatively expensive, so it is necessary to synthesis the bio-based surfactants that are renewable and ecofriendly. The surfactant solution can reduce the interfacial tension (IFT) between oil and water while vinyl acetate monomer has an ability to increase the viscosity as a mobility control. Therefore, polymeric surfactant has both combination properties in reducing the oil/water IFT and increasing the viscosity of the aqueous solution simultaneously. Based on the study, the Critical Micelle Concentration (CMC) of Polymeric Surfactant was at 0.5% concentration with an IFT of 7.72x10-2 mN/m. The best mole ratio of methyl ester sulfonate to vinyl acetate for polymeric surfactant synthesis was 1:0.5 with an IFT of 6.7x10-3 mN/m. Characterization of the product using FTIR and HNMR has proven the creation of polymeric surfactant. Based on the wettability alteration study, it confirmed that the product has an ability to alter from the initial oil-wet to water-wet quartz surface. In conclusion, the polymeric surfactant has ultralow IFT and could be an alternative surfactant for chemical flooding because the IFT value met with the required standard for chemical flooding ranges from 10-2 to 10-3 mN/m.Keywords: Enhanced Oil recovery, Interfacial Tension, Methyl Ester Sulfonate, Polymeric surfactant, vinyl acetate
Recombinant Production and One-Pot Purification for Enhancing Activity of Haloacid Dehalogenase from Bacillus cereus IndB1 Enny Ratnaningsih; Sulistiya Nirta Sunaryo; Idris Idris; Rindia Maharani Putri
Reaktor Volume 21 No. 2 June 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (239.33 KB) | DOI: 10.14710/reaktor.21.2.59-64

Abstract

In recent years we have witnessed the emergence of organohalogen utilization in various chemical-based industries, particularly polymer-based, agricultural, and pharmaceutical sectors. Despite this, organohalogen compounds are actually very dangerous to the environment, as they are difficult to be naturally degraded and generally toxic to organisms. A green and biocompatible method to overcome this issue is by employing enzymes that could convert organohalogens into non-toxic compounds, such as the class of enzymes known as haloacid dehalogenases. To enhance the activity of haloacid dehalogenase isolated from local strains of Bacillus cereus IndB1, we have developed a recombinant expression system using pET-bcfd1 plasmid in E. coli BL21 (DE3) host cells. Following enzyme production, we also demonstrated a one-pot purification system for the expressed dehalogenase, harnessing the presence of His-tag in the recombinant clones. Purification was carried out using Ni-NTA affinity column chromatography, using imidazole eluent with a concentration gradient of 10 mM to 500 mM. The enzyme activity was tested against the monochloroacetic acid (MCA) substrate according to the Bergmann and Sanik method, and the protein content in the solution was measured using the Bradford method. The purity of the enzyme after one-pot purification was confirmed by SDS-PAGE analyses, showing a single band of 40 kDa in size. Remarkably, the purified haloacid dehalogenase specific activity was increased by 12-fold compared to its crude enzyme extract. Therefore, the expression and purification system developed in this study allow further exploration of dehalogenases from local strains as an efficient catalyst for MCA biodegradation.Keywords: recombinant expression, haloacid dehalogenase, monochloroacetic acid, enzyme purification
Characteristic of Kimpul (Xanthosoma sagittifolium) Flour Modified with Hydrogen Rich Water Gita Indah Budiarti; Endah Sulistiawati; Nurani Sofiana; Dessy Norma Yunita
Reaktor Volume 21 No.4 December 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.449 KB) | DOI: 10.14710/reaktor.1.1.155-159

Abstract

Kimpul one of tuber that potentially for substitute wheat in Indonesia. The disadvantage of kimpul tubers is that they are easily damaged or not durable because they have a high moisture content. Either method to modify starch is to use hydrogen rich water. The advantages of HRW compared to other modification methods are that HRW is safer, healthier for the body and more economical. The objective of the work was to determine the effect of hydrogen rich water and drying temperature on characteristic kimpul flour. Variables were used in this research pH (3, 6,7,9,11), soaking time (15, 30, 45, 60, and 75 minutes), temperature drying (100,110,120°C). The result is yield maximum obtained 38.67% at pH 7, soaking time 45 minutes and temperature drying 100°C. Swelling power is 0.52%. Structure molecule spherical and, separated. Result of proximate analysis for modified kimpul flour are ash content 4.49%; fat content 0.27%; fiber 4.69%; carbohydrate content 76.25%; protein 4.15%; moisture content 10.14%, energy 313.76 Kal/100 g; reducing sugar 0.78%. Color analysis result L, a and b are 19.63; 1.78 and 9.23 respectively. Hydrogen rich water has a good effect on molecules and color.Keywords: flour, kimpul, hydrogen rich water
The Release of Fertilizer on Corncob Cellulose – Based Acid-Acrylamide Hydrogel Prepared by Chemical Cross-Binding Method Renda Amalia Anggraini; Mersi Kurniati; Christina Winarti; Irmansyah Irmansyah
Reaktor Volume 21 No. 3 September 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (607.039 KB) | DOI: 10.14710/reaktor.21.3.109-115

Abstract

Farmers' knowledge of the amount and dosage of fertilizers recommended for a practical fertilization system is low. As the result, the plant does not fully absorb the given fertilizer. Some fertilizers are leached by the flowing water and wasted into the soil layer. In long term basis, this practice can cause environmental pollution, especially on the land, water and air. Due to this fertilization problem in agriculture practice, a material with a high-water absorption capacity, which further releases it together with the fertilizer over a desirable period of time, is needed. One way to effectively provide water and nutrients to the plants and improve the physical and chemical properties of the fertilizzer is by the application of hydrogel. In this work, the release of urea fertilizer in a hydrogel-based on corncob cellulose was prepared using N, N'-Methylene Bis-acrylamide (MBA) as a crosslinker was studied. This research aims to produce a hydrogel with good physical and mechanical properties using acrylamide based on corn cobs cellulose and can be applied as a fertilizer carrier matrix whose structure can regulate fertilizer release. The treatments tested were MBA concentrations of 0%, 1%, and 2%, while the ratio of cellulose: solvent was 1: 2 and the addition of urea fertilizer with a concentration of 5%. The results showed that the swelling value increased with increasing acrylamide in the treatment ratio of the concentration of cellulose: acrylamide-acrylamide (NS: AAm). Fertilizer factors also gave a good swelling value. This shows that the addition of fertilizers gives maximum results. The hydrogel with the best treatment, namely the concentration ratio of 1% MBA, produced a swelling value of 7633.3%, a gel fraction of 76.51%, 1.73 miligram fertilizer loading, fertilizer release by 2.9%, a hardness of 7,865 N, with the morphology showing urea crystals in the form of white spots and showing the results of a slow but optimum release rate of fertilizer so that it can be applied for agriculture that requires a lot of nutrients at the beginning of growth.Keywords: corncorb; cellulose; hydrogel; N’,N’-Methylene Bis-acrylamide (MBA), slow released fertilizer
Fouling Analysis on Polysulfone/Peg400/ZnO Membrane during Textile Wastewater Treatment Putu Teta Prihartini Aryanti; Febrianto Adi Nugroho; Gatra Buana Winiarti; Ghina Shofi Pratiwi; I Nyoman Widiasa
Reaktor Volume 21 No.4 December 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (487.583 KB) | DOI: 10.14710/reaktor.1.1.139-145

Abstract

Fouling has become the main problem in long-term application of ultrafiltration (UF) membrane for water and wastewater treatment, significantly reducing membrane productivity. In this paper, fouling on polysulfone-based membrane was analyzed using Hermia’s model during textile wastewater treatment. The UF membrane has been prepared by blending polysulfone (PSf), acetone, and PEG400 in DMAc, with ZnO nanoparticles at a concentration of 1% by weight of polymers (PSf and PEG400). The influence of polysulfone concentration (18 and 20 wt.%) and PEG400 (0 - 25 wt.%) on fouling mechanisms was investigated. It was found that the increase of polysulfone from 18 to 20 wt.% reduced permeate flux from 54 to 25 L.m-2.h-1. Vise versa, the increase of PEG400 concentration enhanced the permeate flux. More stable flux was achieved when 18 wt.% of polysulfone was used to prepare the UF membrane. The fouling type in the UF membrane depends on the characteristics of the membrane. A significant flux decline occurred when used 20 wt.% of polysulfone without the addition of PEG400. Smaller membrane pore and higher hydrophobicity due to high polysulfone concentration induced cake layer of fouling on the membrane surface at the first 40 minutes of ultrafiltration. Further increase of operating time, internal fouling was formed due to the movement of pollutants to the permeate side caused by different concentrations. The highest color rejection (86%) was achieved when 25 wt.% of PEG400 was added in 20 wt.% of polysulfone solution.Keywords: fouling, hermia model, ultrafiltration, wastewater treatment.
Characteristics of Edible Film Made from Pectin of Papaya Peel Yuniwaty Halim; Carinna Ruth Darmawan
Reaktor Volume 21 No. 3 September 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (339.448 KB) | DOI: 10.14710/reaktor.21.3.116-123

Abstract

Papaya (Carica papaya L.) peel contains a considerable amount of pectin, high molecular weight polysaccharides that can be used in edible film making due to its ability to form gels. However, edible film from pectin usually has poor moisture barrier properties. Therefore, pectin is generally combined with glycerol as plasticizer and starch. This research aimed to utilize pectin from papaya peel with the addition of corn starch in edible film making to determine the characteristics of pectin from papaya peel and the effect of pectin and corn starch concentration on edible film characteristics. Pectin extracted from papaya peel was classified as low methoxyl pectin (LMP). The pectin was then utilized in edible films making together with corn starch addition. Two factors were used in this research, which included pectin amount (0.75 g, 1.0 g, 1.25 g) and corn starch concentration (40%, 50%, 60%, based on pectin). The selected edible films formulation was an edible film made from a pectin amount of 1 g with 50% corn starch (based on pectin weight). This formulation showed low water vapor transmission rate (WVTR) of 3.447±0.270 g.mm/m2/hour, a moderate tensile strength of 1.3121±0.0720 MPa, a moderate elongation percentage of 9.42±0.08%, and a thickness of 0.11±0.01 mm.Keywords: corn starch; edible films; papaya peel; pectin
Reduction of Fe Using Advanced Oxidation Processes (AOPs) and Electromagnetic Water Treatment (EWT) Veny Luvita; Novan Agung Mahardiono; Hanif Fakhrurroja; Adi Waskito
Reaktor Volume 21 No.4 December 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (282.358 KB) | DOI: 10.14710/reaktor.1.1.133-138

Abstract

The processing on water treatment in this research is carried out by using two combination methods of Advanced Oxidation Processes (AOPs) and Electromagnetic Water Treatment (EWT). The application of AOPs method is one of alternative to remove heavy metals while the application of EWT method is to improve water quality and to prevent the using of expensive chemicals or corrosive substances. The using of chemicals can cause new problems that endanger human health or damage the environment. This paper presents the advantage of the combining these methods is the high ability to process contaminated water into clean water. AOPs and EWT system configuration is needed to determine the effectiveness of the processing system, especially in removing heavy metal minerals such as iron (Fe). Based on the efficiency result, the configuration by using AOPs + EWT reduces the iron (Fe) mineral content by 99,33% and increases the pH value by 6.09.Keywords: water; treatment; substances; metal; mineral
The Effect of Variation of Raw Material Ratio on Hydrogel Based on K-Carrageean - Acrylamide as a Carrier of Ammonium Nitrate Fertilizer Hendrawan Laksono; Mersi Kurniati; Yessie Widya Sari; Christina Winarti
Reaktor Volume 21 No. 3 September 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (403.328 KB) | DOI: 10.14710/reaktor.21.3.103-108

Abstract

Hydrogels based on natural polymers such as carrageenan are currently being developed to improve efficiency in agriculture. By enriching hydrogels with fertilizers, they will be released slowly into the soil. Enrichment of fertilizers on carrageenan-based hydrogels was carried out and analyzed with the response of swelling ability, gel fraction value of grafting degree, to the hydrogel's ability to release the fertilizer trapped in it. Carrageenan is used because its use as a natural polymer has not been widely explored, especially in the non-food sector. The results showed that the average swelling value of carrageenan-based hydrogel to ammonium nitrate solution ranged from 750.00% - 1,633.33%. The gel fraction values obtained ranged from 74.06% to 87.51%, and the degree of grafting ranged from 85.33% to 93.59%. These values indicate a relatively high degree of tissue density and grafting of acrylamide monomer on carrageenan, which means that the carrageenan:AAm based hydrogel has strong mechanical properties. The ability to release ammonium nitrate samples from the hydrogel carrageenan-based has a value ranging from 8.86% to 44.92% in five days of observation. Interpretation of the test results, the best ratio of carrageenan:AAm is 1:1, due to its relatively low release value but still has good swelling and mechanical properties.Keywords: Hydrogel; Carrageenan; Acrilamyde; Fertilizer release

Filter by Year

1999 2025


Filter By Issues
All Issue Volume 25 No.2 August 2025 Volume 25 No.1 April 2025 Volume 24 No.3 December 2024 Volume 24 No.2 August 2024 Volume 24 No.1 April 2024 Volume 23 No.3 December 2023 Volume 23 No.2 August 2023 Volume 23 No.1 April 2023 Volume 22 No. 3 December 2022 Volume 22 No.2 August 2022 Volume 22 No. 1 April 2022 Volume 21 No.4 December 2021 Volume 21 No. 3 September 2021 Volume 21 No. 2 June 2021 Volume 21 No. 1 March 2021 Volume 20 No.4 December 2020 Volume 20 No.3 September 2020 Volume 20 No.2 June 2020 Volume 20 No.1 March 2020 Volume 19 No. 4 December 2019 Volume 19 No. 3 September 2019 Volume 19 No. 2 June 2019 Volume 19 No. 1 March 2019 Volume 18 No. 4 December 2018 Volume 18 No. 3 September 2018 Volume 18 No. 2 June 2018 Volume 18 No. 1 March 2018 Volume 17 No. 4 Desember 2017 Volume 17 No. 3 September 2017 Volume 17 No. 2 Juni 2017 Volume 17 No.1 Maret 2017 Volume 16 No.4 Desember 2016 Volume 16 No.3 September 2016 Volume 16 No. 2 Juni 2016 Volume 16 No.1 Maret 2016 Volume 15 No.4 Oktober 2015 Volume 15 No.3 April 2015 Volume 15, No.2, OKTOBER 2014 Volume 15, No.1, APRIL 2014 Volume 14, No. 4, OKTOBER 2013 Volume 14, No. 3, APRIL 2013 Volume 14, Nomor 2, Oktober 2012 Volume 14, Nomor 1, April 2012 Volume 13, Nomor 4, Desember 2011 Volume 13, Nomor 3, Juni 2011 Volume 13, Nomor 2, Desember 2010 Volume 13, Nomor 1, Juni 2010 Volume 12, Nomor 4, Desember 2009 Volume 12, Nomor 3, Juni 2009 Volume 12, Nomor 2, Desember 2008 Volume 12, Nomor 1, Juni 2008 Volume 11, Nomor 2, Desember 2007 Volume 11, Nomor 1, Juni 2007 Volume 10, Nomor 2, Desember 2006 Volume 10 No. 1 Juni 2006 Volume 09 No. 02 Desember 2005 Volume 09 No.1 Juni 2005 Volume 08 No.2 Desember 2004 Volume 08 No.1 Juni 2004 Volume 07 No.2 Desember 2003 Volume 07 No. 1 Juni 2003 Volume 6 No. 2 Desember 2002 Volume 6 No. 1 Juni 2002 Volume 5 No.2 Desember 2001 Volume 5 No. 1 Juni 2001 Volume 3 No.1 Desember 1999 More Issue