cover
Contact Name
Dessy Ariyanti
Contact Email
dessy.ariyanti@che.undip.ac.id
Phone
+62247460058
Journal Mail Official
j.reaktor@che.undip.ac.id
Editorial Address
Department of Chemical Engineering, Diponegoro University Jl. Prof. Soedarto SH Tembalang Semarang 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Reaktor
Published by Universitas Diponegoro
Reaktor invites contributions of original and novel fundamental research. Reaktor publishes scientific study/ research papers, industrial problem solving related to Chemical Engineering field as well as review papers. The journal presents paper dealing with the topic related to Chemical Engineering including: Transport Phenomena and Chemical Engineering Operating Unit Chemical Reaction Technique, Chemical Kinetics, and Catalysis Designing, Modeling, and Process Optimization Energy and Conversion Technology Thermodynamics Process System Engineering and products Particulate and emulsion technologies Membrane Technology Material Development Food Technology and Bioprocess Waste Treatment Technology
Articles 530 Documents
Application of Glyoxal Acrylamide Modified Κ-Carrageenan as A Superabsorbent Polymer in Drug Delivery System Aji Prasetyaningrum; Al Farrel A. Raemas; Nur Rokhati; Bakti Jos
Reaktor Volume 20 No.3 September 2020
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (835.098 KB) | DOI: 10.14710/reaktor.20.3.150-158

Abstract

The hydrogel is superabsorbent polymers (SAP) that are biodegradable and can be obtained from polysaccharides, lipids, and proteins. Polysaccharides include cellulose, starch and their derivatives, seaweed extracts such as carrageenan, alginate, pectin, and chitosan. Carrageenan is the result of the extraction of red seaweed sap with an alkaline solution. The main objective of this study was to simultaneously increase the strength and properties of κ-carrageenan SAP film with the addition of glyoxal and acrylamide as crosslinkers. The addition of acrylamide (variated from 1 to 7 % b/v) into the k-Carrageenan based SAP hydrogel compound and the presence of glyoxal as crosslink agent (variated from 0 to 1,0 % v/v). The physical properties of the SAP films were analyze using swelling degree and tensile strength. The structural and morphological properties of composite films were analyzed using Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM). In addition, the effect of pHs on the releasing drug Poly(vinylpyrrolidone)-Iodine was investigated. This research shows that the addition of acrylamide and glyoxal can improve the physical properties of the modified κ-carrageenan film. Characterization using SEM shows that the addition of glyoxal causes the formation of tissue fibers in SAP. FTIR spectra indicated the formation of cross bonds in modified SAP film at 3294.42 cm-1 (carboxylic acid). The treatment under alkaline conditions will increase drug release ability.Keywords: κ-carrageenan; hydrogels; acrylamide; glyoxal; drug delivery
Antioxidant Activity of Vitamin E Concentrate from Magnesium Salts of Palm Fatty Acid Distillate (Mg-PFAD) Dianika Lestari; Khalisa Putri Aqilah; Salsafia Putri; Ardiyan Harimawan; Diky Mudhakir; Muhamad Insanu
Reaktor Volume 21 No. 1 March 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (829.293 KB) | DOI: 10.14710/reaktor.21.1.35-43

Abstract

Vitamin E concentrate was produced through saponification of palm fatty acid distillates (PFAD) and magnesium oxide to form Mg-PFAD, followed by three-stages vitamin E extraction with isopropanol, hexane, or ethanol. The vitamin E-rich extracts were evaporated to remove solvent and produced vitamin E concentrate. The objectives of this research were to investigate the effect of organic solvent’s types and solvent to Mg-PFAD mass ratios on vitamin E concentration, solvent selectivity, and antioxidant activity of the vitamin E concentrate. Vitamin E concentrates obtained after isopropanol extraction had vitamin E concentration of 784 ppm with vitamin E recovery of 16 mg tocopherol/100 mg tocopherol in Mg-PFAD, while vitamin E concentrates obtained after hexane extraction had vitamin E concentration of 574 ppm with vitamin E recovery of 35 mg tocopherol/100 mg tocopherol in Mg-PFAD. Isopropanol extraction produced vitamin E concentrate with the highest selectivity for vitamin E and the highest antioxidant activity of 79% IC. It was found that vitamin E concentration was not proportional to the antioxidant activity of the vitamin E concentrate.Keywords: Direct solvent extraction, palm fatty acid distillate, saponification, vitamin E, unsaponifiable matter 
Solely Cellulose-based Adsorbent Derived from Oil Palm Empty Fruit Bunches for Dye Removal Athanasia Amanda Septevani; Farhan Riza Afandi; Yulianti Sampora; Melati Septiyanti; Yenni Apriliany Devy; Aisah Resti Amelia; Dian Burhani
Reaktor Volume 20 No.3 September 2020
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (603.257 KB) | DOI: 10.14710/reaktor.20.3.122-128

Abstract

The purpose of this research is to determine the adsorption capability of micro and nano-cellulose derived from oil palm empty fruit bunch (EFB) as dye removal. Cellulose based adsorbents were successfully obtained from EFB in the form of microcellulose (eMC) via both delignification (D-eMC) and bleaching processes (B-eMC) as well as in nanocellulose (eNC) by using acid hydrolysis method and hence termed as delignified-eNC (D-eNC) and bleached-eNC (B-eNC) respectively. Dye adsorption test was carried out by UV-Spectrophotometer by comparing initial dye MO concentration (as a control solution) to the treated MO solution upon the addition of micro- and nano- cellulose based adsorbent. It was clear that the dye removal efficiency of micro-cellulose both D-eMC and B-eMC were lower than the nano-cellulose structures. The higher adsorptive capacity of nano-size cellulose compared to the micro-size cellulose was confirmed by the distinct presence of FTIR shifting peak of hydroxyl and sulfonyl groups. It was expected as the micro-size of cellulose would not be able to provide a good adsorptive capability of hydroxyl surface active agent to adsorb the dye. In the case of eNC, the result showed that D-eNC afforded a better dye adsorption than B-eNC. At the same concentration of eNC at 3 wt. %, D-eNC could adsorb at about 19.3% of MO while only 2.4% of MO could be removed by B-eNC. Finally, all of adsorbent could maintain pH and TDS within water quality specification. 
Simultaneous Pretreatment Process on The Isolation of Cellulose Mycrocrystalline from Oil Palm empty Fruit Bunches Yulianti Sampora; Yenni Apriliany Devy; Dewi Sondari; Athanasia Amanda Septevani
Reaktor Volume 20 No.4 December 2020
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (699.158 KB) | DOI: 10.14710/reaktor.20.4.174-182

Abstract

This research was aimed to evaluate the isolation of cellulose derived from empty fruit bunches (EFB), especially to increase the purity of cellulose content by subsequent pretreatment process involving delignification using NaOH followed by bleaching process using hydrogen peroxide (H2O2). The result showed that the cellulose content of the raw EFB content at 37.6% ± 0.3 w/w increased to 89.2% ± 0.4 w/w after the simultaneous pretreatment process. Moreover, after the simultaneous of bleaching process using H2O2, the lignin content can be reduced up to 3.1% ± 0.1 w/w which similar to cellulose standard (2.7% ± w/w). The utilization of simultaneous pretreatment process can also reduce the hemicellulose content from 23.9% ± 0.3 w/w (raw EFB) to 7.7% ± 0.2 w/w even lower than the cellulose standard (13.1% w/w). FTIR spectrum showed that the peak absorption of cellulose increased significantly upon the simultaneous process of delignification-bleaching. Morphological changes of the raw EFB compared to pre-treated EFB as a note by SEM analysis showed the significant transformation from the larger size and tightly bundles of micro-fibril cellulose into smaller size and individually separated micro-fibrils. Further through the simultaneous process exhibited yield at 80-85%, high crystallinity (70-80%), and good thermal stability in terms of Tonset at about 230-290 °C. From these results, it can be concluded that the subsequent pretreatment process involving NaOH delignification and H2O2 bleaching processes more likely offer a high selectivity of cellulose microcrystalline from lignocellulosic biomass material by simultaneous reduction of the hemicellulose and lignin content without disrupting the structure of cellulose.Keywords: bleaching; cellulose; delignified; microcrystalline cellulose; oil palm empty fruit bunches
Erratum to: Evaluation Performance of Pneumatic Dryer for Cassava Starch [18 (4): 216-223] Editorial, Reaktor
Reaktor Volume 20 No.3 September 2020
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (108.574 KB) | DOI: 10.14710/reaktor.20.3.159-159

Abstract

Correction to: Reaktor (2018), 18 (4): 216-223 (doi: https://doi.org/10.14710/reaktor.18.04.216-223) An error appeared in the article entitled “Evaluation Performance of Pneumatic Dryer for Cassava Starch” published in Reaktor. In the published article the acknowledgement was:The authors would like to thank Widiantara, Maria Agustin Taolin and Dea Endah, Y. for supporting in preparation of materials this research. The acknowledgement of the article is corrected to be: none The original article can be access online at: https://doi.org/10.14710/reaktor.18.04.216-223  How to Cite This Article: Suherman and Hidayati, N. (2018), Evaluation Performance of Pneumatic Dryer for Cassava Starch, Reaktor, 18(4), 216-223,http://doi.org/10.14710/reaktor.18.04.216-223. Permalink/DOI: http://doi.org/10.14710/reaktor.20.03.159-159
Transformation of Calcium Carbonate Polymorph From Various Type of Shells by Carbonation Methods Srie Muljani; Erwan Adi Saputra; Ketut Sumada
Reaktor Volume 21 No. 1 March 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1446.366 KB) | DOI: 10.14710/reaktor.21.1.27-34

Abstract

The utilization of shells can reduce the accumulation of shell wastes and increase the value of shells to achieve ecological and economic incentives. This study examines the transformation of calcium carbonate polymorph from several types of shells to understand the causes of their characteristics in order to suitable for their use. The types of shells used in this experiment are selected based on consumable and their habitats such as snail shells, crab shells, eggshells, batik mussels shells, and golden conch shells. The prepared shells calcinate at 900 °C, the reaction with hydrochloric acid, and carbonation by flowing CO2 into a stirred reactor to produce precipitated CaCO3. The characteristics of polymorph CaCO3  in the sintering temperature of 30, 50, and 70 ℃ were identified by XRD, FTIR, and SEM morphological. The result is that the polymorphs formed from each shell are different in shape, size, and crystallinity. At the temperature of 70 ℃, the rhombohedral calcite was obtained from snail shells, the cubic calcite was obtained from batik mussel shell, while rhombohedral calcite multilayers obtained (100%) from golden conch shells. The aragonite was obtained from batik mussel shells at 30 and 70 ℃. The pure vaterite (100%) was obtained from snail shells and crab shells at 50 ℃. The characteristic of polymorph formed might be useful as information for more suitable applications, especially as nano-bio materials, optical, or filler
Comparative Analysis Between PI Conventional and Cascade Control in Heater-PFR-Series Dedy Kristanto; Yulius Deddy Hermawan
Reaktor Volume 20 No.3 September 2020
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (993.408 KB) | DOI: 10.14710/reaktor.20.3.129-137

Abstract

The goals of this work are to compare and analyze the use of PI conventional and Cascade control configuration in heater-plug-flow-reactor-series (Heater-PFR-series) to produce benzene through the reaction of hydrodealkylation of toluene (HDA).The two control configurations were rigorously examined in UniSim dynamic simulation environment. The PI control parameters were tuned by using “autotuner” mode of UniSim. As shown in dynamic simulation study, the two control configurations with its tuning parameters gave the fast and stable responses. This study revealed that the Cascade control acted very well and its responses were better and faster than those in PI-conventional.Keywords: cascade control; dynamic simulation; PFR; PI conventional; UniSim
Lignocellulosic Analysis of Corncob Biomass by Using Non-Thermal Pulsed Electric Field-NaOH Pretreatment Angky Wahyu Putranto; Sakinah Hilya Abida; Khodijah Adrebi; Arta Harianti
Reaktor Volume 20 No.4 December 2020
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (419.255 KB) | DOI: 10.14710/reaktor.20.4.183-191

Abstract

In recent years, the second-generation bioethanol and advanced bio-based material production from biomass are focused on the pretreatment process by separating cellulose components from other components such as lignin and hemicellulose. Therefore, a physicochemical pretreatment method is needed by applying a non-thermal pulsed electric field (PEF) and alkali methods to increase the cellulose availabilities with a short process and low energy input. The aim of this study was to analyze the lignocellulose content of corncob biomass by using non-thermal pulsed electric fields (PEF) and NaOH pretreatment. The pretreatment factors used were the electric field strength of PEF and the pretreatment time. Analysis of the structure and elements of the lignocellulose based on the characteristics of the gravimetric method and SEM-EDX for untreated and treated samples. The results showed that pretreatment of corncobs biomass by using PEF optimally at an electric field strength of 9 kV/cm and pretreatment time of 60 seconds that was increasing cellulose of 40.59% when compared with the control and also decreasing the hemicellulose and lignin content of 12.9% and 2.02%, respectively. Under these conditions, the energy per pulse and specific input energy of PEF required 0.0205 J and 8.72 kJ/L, respectively. The microstructure analysis by using SEM-EDX showed significantly visual differences and was an increase in the percentage of C and O atoms between untreated and treated corncob biomass. Furthermore, the corncob biomass treated by using non-thermal PEF and alkali can become effective and efficient for the next process into cellulose-derived products.Keywords: corncob biomass; pulsed electric field; NaOH; pretreatment; cellulose
Kinetic Study of Kapok Seed Oil Esterification using BMIM-PF6 Catalyst Bagus Agang Sudrajat; Widayat Widayat; Ngurah Widiantara; Hantoro Satriadi; Maria Siahaan; Wira Pinem
Reaktor Volume 20 No.3 September 2020
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (0.164 KB) | DOI: 10.14710/reaktor.20.3.138-149

Abstract

Biodiesel offers better combustion efficiency, lower sulfur content and aromatic compounds, higher cetane numbers than diesel fuel, biodegradable and renewable properties that are not possessed by conventional fuels such as diesel fuel. This study aims to study the modeling of esterification process of Kapok seed oil using 3 % liquid ionic catalyst 1-Butyl-3-MethydidazoliumHexafluorophosphate (BMIM-PF6). The validation results of reaction kinetic models for experiments and simulations provide an adjacent correlation value, that is R2 = 0.99526, with the rate constant value (k) based on experimental data are 0.003815 L/mol.s and 0.0038 L/mol.s for the simulation data. Based on the simulation results, the proper reaction order for this esterification reaction is the first order reaction equation with a value of R2 = 0.99526, while the second order reaction gives the value R2 = 0.89453. The reaction kinetics parameters obtained from the experimental results are A = 0.012 L/mol.s and -Ea = -0.437 kJ/mol, while the reaction parameters of the simulation are A = 1.0384 L/mol.s and -Ea = -89.5 kJ/mol.Keywords: Esterification, Ionic Liquid Catalyst, Kinetic
N-Acetylglucosamine Production by Repeated-Batch Fermentation Using Immobilized Semi-Purified Chitinase Enzyme on Agar Lucia Soedirga; Hardoko Hardoko; Natasha V Widianto
Reaktor Volume 21 No. 1 March 2021
Publisher : Dept. of Chemical Engineering, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (301.528 KB) | DOI: 10.14710/reaktor.21.1.11-14

Abstract

Chitinolytic mold, such as Mucor circinelloidesis can be utilized to produce chitinase enzyme for shrimp shell’s chitin hydrolysis into N-acetylglucosamine (NAG). For that purpose, entrapment of chitinase on agar as a carrier could be an alternative way to improve NAG production. This study aimed to investigate the stability of immobilized semi-purified chitinase on agar for multiple cycles fermentation to produce NAG. In this study, 0.6 mL of semi-purified chitinase enzyme was immobilized into 3% of agar matrices and tested for four fermentation cycles to obtain highest NAG concentration and good enzyme activity. The results indicate that the immobilized chitinase could be used for 6 hours fermentation or three fermentation cycles. The NAG concentration produced after three cycle were 1042.22 ± 16.20 ppm. Besides, the immobilized enzyme was considerably stable up to the third cycles with activity value of about 4.74 U/mL.Keywords: agar; immobilized;NAG; repeated fermentation

Filter by Year

1999 2025


Filter By Issues
All Issue Volume 25 No.2 August 2025 Volume 25 No.1 April 2025 Volume 24 No.3 December 2024 Volume 24 No.2 August 2024 Volume 24 No.1 April 2024 Volume 23 No.3 December 2023 Volume 23 No.2 August 2023 Volume 23 No.1 April 2023 Volume 22 No. 3 December 2022 Volume 22 No.2 August 2022 Volume 22 No. 1 April 2022 Volume 21 No.4 December 2021 Volume 21 No. 3 September 2021 Volume 21 No. 2 June 2021 Volume 21 No. 1 March 2021 Volume 20 No.4 December 2020 Volume 20 No.3 September 2020 Volume 20 No.2 June 2020 Volume 20 No.1 March 2020 Volume 19 No. 4 December 2019 Volume 19 No. 3 September 2019 Volume 19 No. 2 June 2019 Volume 19 No. 1 March 2019 Volume 18 No. 4 December 2018 Volume 18 No. 3 September 2018 Volume 18 No. 2 June 2018 Volume 18 No. 1 March 2018 Volume 17 No. 4 Desember 2017 Volume 17 No. 3 September 2017 Volume 17 No. 2 Juni 2017 Volume 17 No.1 Maret 2017 Volume 16 No.4 Desember 2016 Volume 16 No.3 September 2016 Volume 16 No. 2 Juni 2016 Volume 16 No.1 Maret 2016 Volume 15 No.4 Oktober 2015 Volume 15 No.3 April 2015 Volume 15, No.2, OKTOBER 2014 Volume 15, No.1, APRIL 2014 Volume 14, No. 4, OKTOBER 2013 Volume 14, No. 3, APRIL 2013 Volume 14, Nomor 2, Oktober 2012 Volume 14, Nomor 1, April 2012 Volume 13, Nomor 4, Desember 2011 Volume 13, Nomor 3, Juni 2011 Volume 13, Nomor 2, Desember 2010 Volume 13, Nomor 1, Juni 2010 Volume 12, Nomor 4, Desember 2009 Volume 12, Nomor 3, Juni 2009 Volume 12, Nomor 2, Desember 2008 Volume 12, Nomor 1, Juni 2008 Volume 11, Nomor 2, Desember 2007 Volume 11, Nomor 1, Juni 2007 Volume 10, Nomor 2, Desember 2006 Volume 10 No. 1 Juni 2006 Volume 09 No. 02 Desember 2005 Volume 09 No.1 Juni 2005 Volume 08 No.2 Desember 2004 Volume 08 No.1 Juni 2004 Volume 07 No.2 Desember 2003 Volume 07 No. 1 Juni 2003 Volume 6 No. 2 Desember 2002 Volume 6 No. 1 Juni 2002 Volume 5 No.2 Desember 2001 Volume 5 No. 1 Juni 2001 Volume 3 No.1 Desember 1999 More Issue