cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Transmisi: Jurnal Ilmiah Teknik Elektro
Published by Universitas Diponegoro
ISSN : -     EISSN : 24076422     DOI : -
Core Subject : Education,
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 25, No 3 Juli (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro" : 6 Documents clear
PROTOTYPE MONITORING SUHU DAN KELEMBAPAN PADA KUBIKEL 20 kV BERBASIS IoT Irawati Irawati; Muhamad Toriqul Amien; Edy Sumarno; Furqon Rosyadi
Transmisi: Jurnal Ilmiah Teknik Elektro Vol 25, No 3 Juli (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro
Publisher : Departemen Teknik Elektro, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/transmisi.25.3.103-114

Abstract

Sumber daya alam saat ini yang menjadi faktor primer atau kebutuhan pokok untuk manusia salah satunya energi listrik. Salah satu komponen dari kualitas suplai listrik adalah kesehatan pada kubikel. Persoalan salah satu yang sering terjadi pada kubikel adalah korona, yaitu suatu proses yang terjadi pada saat udara di sekitar penghantar atau konduktor terionisasi. Korona akan muncuk jika suhu dan kelembapan udara di kubikel sangat tinggi. Berdasarkan pengaruh tekanan parsial udara terhadap korona maka dimungkinkan untuk menentukan apakah insiden korona terjadi atau tidak pada kubikel. Selama ini dalam pemeriksaan kubikel tersebut masih dilakukan secara manual dengan cara datang langsung ke tiap gardu. Penelitian ini merancang sistem monitoring suhu, kelembapan dan tegangan yang ada di dalam kubikel berbasis Internet of Things (IoT). Dengan menggunakan sensor DHT22 untuk mengukur suhu dan kelembapan pada kubikel 20 kV dan sensor ZMPT101B untuk megukur tegangan pada heater yang ada di dalam kubikel 20 kV. Alat ini menggunakan Arduino UNO sebagai mikrokontroller dan NodeMCU ESP8266 sebagai platform IoT. Hasil pembacaan dari sensor DHT22 dan ZMPT101B akan diproses Arduino UNO yang dikirimkan ke internet untuk ditampilkan pada Firebase dan MIT App Inventor. Dari hasil pengujian yang telah dilakukan, rata-rata suhu yang bekerja pada kubikel adalah 33,72 ᵒC, rata-rata nilai kelembapan adalah 60,82 % dan rata-rata nilai tegangan adalah 244,7 V. Itu artinya termasuk dalam kondisi yang normal, dimana batas suhu dalam kondisi normal adalah 35 ᵒC dan batas kelembapan dalam kondisi normal adalah 75%. Ketika nilai suhu dan kelembapan melebihi batas tersebut, dan tegangan hilang atau tidak ada, maka dikategorikan pada kondisi yang tidak aman dan notifikasi akan muncul pada MIT App Inventor. Dengan adanya sistem ini diharapkan dapat memudahkan petugas atau user dalam memantau tegangan heater, suhu dan kelembapan yang ada di dalam kubikel 20 kV secara online dan realtime tanpa harus datang secara langsung ke setiap kubikel.
PENDETEKSI PENEBANG LIAR MENGGUNAKAN SENSOR SUARA MAX4466 DI KAWASAN HUTAN Ahmad Zulfadli; Oktaf Brilian Kharisma; Harris Simaremare; Ewi Ismaredah
Transmisi: Jurnal Ilmiah Teknik Elektro Vol 25, No 3 Juli (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro
Publisher : Departemen Teknik Elektro, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/transmisi.25.3.95-102

Abstract

Penebangan liar merupakan masalah serius yang menyebabkan rusaknya sumber daya hutan dari segi kualitas, kuantitas, dan ekosistem. Berbagai upaya telah dilakukan untuk mencegah praktik penebangan liar, antara lain pengawasan hutan, menetapkan undang-undang yang mengatur tindak pidana kasus penebang liar, dan mempertegas sanksi bagi pelaku penebang liar. Namun, praktik penebangan liar masih sering terjadi karena keterbatasan pengawasan yang bisa dilakukan. Oleh karena itu, dirancang sistem pendeteksi penebang liar sebagai alternatif untuk membantu pengawasan area hutan dari jarak jauh. Sistem dirancang untuk mengidentifikasi suara gergaji mesin menggunakan 4 sensor suara MAX4466. Kemudian, data tingkat kebisingan di proses dan dikirim dari Node ke IoT Gateway setiap satu menit. Dan setelah IoT Gateway menerima data, selanjutnya akan dikirim ke web server untuk disimpan di database dan ditampilkan di website monitoring.  Pada pengujian yang dilakukan, nilai ambang batas ditetapkan sebesar 60 dB. Hasilnya, sistem dapat mendeteksi suara gergaji mesin kecuali pada percobaan arah sensor 2 dengan jarak 50 m dikarenakan hambatan yang berbeda pada setiap arah sensor dalam pengujian dan mempengaruhi gelombang suara yang terdeteksi oleh sensor.
PELACAKAN DAYA MAKSIMUM PHOTOVOLTAIC DALAM KEADAAN TRANSISI BERBAYANG MENGGUNAKAN ALGORITMA MPPT QUEEN HONEY BEE MIGRATION (QHBM) Aripriharta Aripriharta; Erry Asnarindra; Ahmad Dhaffa' Nibrosoma; Langlang Gumilar; Muhammad Afnan Habibi
Transmisi: Jurnal Ilmiah Teknik Elektro Vol 25, No 3 Juli (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro
Publisher : Departemen Teknik Elektro, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/transmisi.25.3.85-94

Abstract

Dalam sistem fotovoltaik, diperlukan teknik untuk memaksimalkan daya listrik output. Salah satu teknik yang digunakan adalah metode Maximum Power Point Tracking (MPPT) yang menemukan titik koordinat daya maksimum (MPP) pada kurva PV. Namun, ada masalah baru dalam MPPT terkait dengan bayangan parsial pada permukaan PV yang tidak merata iradiasinya. Masalah ini dapat mengubah posisi MPP pada kurva PV dan mengganggu kestabilan pencarian MPP selama periode transisi bayangan. Sebuah paper memperkenalkan metode heuristik baru yang disebut Queen Honeybee Migration Algorithm (QHBM) untuk mengatasi masalah ini. Metode ini meniru proses migrasi lebah madu Riau dalam mencari tempat terbaik untuk membangun sarang baru dengan menggunakan tegangan dan arus output panel surya sebagai inisialisasi posisi Queen dan Scouts. Bobot Scout disesuaikan dengan konstanta yang berubah sesuai posisinya dari MPP yang baru. Queen menentukan arah migrasi dengan memilih Scout dengan bobot terendah dan bermigrasi perlahan ke titik MPP sampai beberapa iterasi, kemudian menetap dan membangun sarang di MPP. Simulasi menunjukkan bahwa QHBM memiliki kecepatan komputasi yang cepat dan kestabilan yang baik dalam mencapai konvergensi, serta mampu melacak daya maksimal dalam kondisi irradiasi tertinggi, dibandingkan dengan metode heuristik lain seperti Particle Swarm Optimization (PSO), Perturb and Observe (P&O), Genetic Algorithm (GA).Bottom of Form
A CONTROLLER AREA NETWORK (CAN) BUS TEMPERATURE AND HUMIDITY DATA MONITORING SYSTEM Arief Wisnu Wardhana; Agung Mubyarto; Acep Taryana
Transmisi: Jurnal Ilmiah Teknik Elektro Vol 25, No 3 Juli (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro
Publisher : Departemen Teknik Elektro, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/transmisi.25.3.115-125

Abstract

Pada riset ini, sudah didesain sebuah sistem pemonitor suhu dan kelembapan relatif. Alat ini mampu untuk mencatat data suhu dan kelembapan relatif secara otomatis dan terus menerus selama 24 jam per hari. Jaringan sistem ini berbasis pada standar bus CAN (Controller Area Network), merupakan sebuah standar yang didesain agar memungkinkan banyak node kendali untuk bisa berkomunikasi satu sama lain tanpa sebuah komputer host. Terdiri dari sebuah jalur bus CAN, dua node transmisi yang dijalankan oleh satu Arduino UNO dan satu Arduino Nano, serta satu node penerima yang dijalankan oleh sebuah Arduino UNO board. Kemudian terdapat tiga MCP2515 CAN bus controllers, tiga TJA1050 CAN transceivers, dua sensor suhu dan kelembapan DHT11, dan sebuah LCD I2C 16x2 untuk menampilkan data suhu dan kelembapan. Sensor DHT11 mengukur suhu dan kelembapan di sekitarnya. Terdapat dua node transmisi, satu mengirimkan data suhu dan satunya lagi mengirimkan data kelembapan yang sudah diukur oleh DHT11. Data kemudian diproses oleh node transmitter dan dikirimkan melalui CAN bus. Untuk menampilkan data dilakukan oleh node receiver.     Beberapa pesan suhu dan pesan kelembapan dengan nomor identifikasi pesan yang berbeda beda dicoba untuk ditransmisikan. Hasilnya menunjukkan bahwa LCD selalu menampilkan pesan pesan yang mempunyai nomor identifikasi lebih rendah. Dengan sedikit penambahan pada program untuk node transmitter, bisa dibuat data suhu terukur dan kelembapan terukur ditampilkan secara bergantian dan kontinyu pada LCD. Secara keseluruhan, dapat disimpulkan bahwa sistem ini sudah berfungsi dengan baik sesuai dengan spesifikasi. CAN bus yang terklasifikasi sebagai sebuah jaringan industri adalah merupakan jaringan bus perangkat yang sangat berguna. Jaringan bus perangkat ini bisa mentransfer beberapa byte informasi (sampai delapan byte) dalam sekali waktu. Terutama, skema alokasi prioritas pesan pada identifier adalah satu fitur CAN yang membuatnya sangat menarik untuk digunakan pada lingkungan kendali waktu- nyata.    Kata kunci: CAN bus, mikrokontroler, sensor suhu, arbitrasi, nomor identifikasi pesan, jaringan bus perangkat
DESAIN KONTROL NONLINIER UNTUK SISTEM HYBRID MICROGRID DENGAN SUMBER ENERGI PEMBANGKIT LISTRIK TENAGA SURYA Panji Setyo Suharso; Trihastuti Agustinah; Ardyono Priyadi
Transmisi: Jurnal Ilmiah Teknik Elektro Vol 25, No 3 Juli (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro
Publisher : Departemen Teknik Elektro, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/transmisi.25.3.126-135

Abstract

Penelitian ini berfokus mendesain suatu sistem kontrol untuk menyelesaikan permasalahan nonlinear pada sistem suplai tenaga listrik melibatkan sumber PV (Photovoltaic) yang terhubung melalui microgrid ke sumber grid. Perubahan konsumsi beban pelanggan pada sistem suplai akan menggangu konsistensi tegangan dan frekuensi suplai. Makalah ini mengusulkan metode input-output linierization untuk desain sistem kontrol yang mampu menjaga nilai tegangan dan frekuensi pada nilai konstan. Modifikasi model nonlinear dari persamaan dinamika sistem microgrid dilakukan berdasarkan teori lie derivative, model persamaan nonlinear diturunkan sampai persamaan output mendapatkan nilai u (input control). Nilai u yang didapat dari modifikasi persamaan sistem tersebut digunakan untuk mendesain sistem kontrol, kemudian nilai u dengan menggunakan metode feedback linierization akan digunakan untuk mencari nilai gain yang sesuai namun sebelumnya dilakukan terlebih dahulu transformasi koordinat untuk mencari nilai matrix A dan B sehingga bentuk model nonlinear dapat ditransformasikan menjadi bentuk linier. Hasil modifikasi yang dilakukan menghasilkan sistem kontrol yang mampu mempertahankan suplai dengan parameter tegangan 238 V AC dan frekunsi 50 Hz (overshoot 6 %) sehingga kebutuhan daya pada sistem suplai tenaga listrik dapat terpenuhi.
MODEL YOLO VERSI 4 PADA PENGENALAN KENDARAAN DI JALAN RAYA KOTA PALEMBANG Ahmad Fali Oklilas; Sukemi Sukemi; Ridho Apriliyanto
Transmisi: Jurnal Ilmiah Teknik Elektro Vol 25, No 3 Juli (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro
Publisher : Departemen Teknik Elektro, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/transmisi.25.3.136-139

Abstract

Setelah didapatkan hasil dari dataset Foto Kendaraan di Jalan Raya Kota Palembang. Pada penelitian ini melakukan training dan testing dari dataset tersebut menggunakan YOLO versi 4 (you only look once). Dalam Penelitian ini bertujuan untuk mendapatkan nilai akurasi dalam mendeteksi objek motor dan mobil.  Hasil Model tersebut akan diuji coba terhadap video rekaman yang didapat dari Jalan Raya. Dataset yang didapat berjumlah 4000 gambar yang berformat .jpg. Dari 4000 file tersebut terdiri dari 2000 file gambar motor dan 2000 file gambar mobil. Hasil dari YOLO v4 mendapatkan akurasi yang baik, hal ini di tunjukkan pada nilai mean Average Precision  (mAP) adalah 0.690423 atau 69.04%. Pada YOLO v4 melakukan proses dengan waktu yang cepat untuk mendeteksi objek gambar dalam satuan second ialah 89 detik.

Page 1 of 1 | Total Record : 6


Filter by Year

2023 2023


Filter By Issues
All Issue Vol 27, No 4 Oktober (2025): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 27, No 3 Juli (2025): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 27, No 2 April (2025): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 27, No 1 Januari (2025): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 26, No 4 Oktober (2024): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 26, No 3 Juli (2024): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 26, No 2 April (2024): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 26, No 1 Januari (2024): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 25, No 4 Oktober (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 25, No 3 Juli (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 25, No 2 April (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 25, No 1 Januari (2023): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 24, No 4 Oktober (2022): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 24, No 3 Juli (2022): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 24, No 2 April (2022): TRANSMISI: Jurnal Ilmiah Teknik Elektro Vol 24, No 1 Januari (2022): TRANSMISI Vol 23, No 4 Oktober (2021): TRANSMISI Vol 23, No 3 Juli (2021): TRANSMISI Vol 23, No 2 April (2021): TRANSMISI Vol 23, No 1 Januari (2021): TRANSMISI Vol 22, No 4 Oktober (2020): TRANSMISI Vol 22, No 3 Juli (2020): TRANSMISI Vol 22, No 2 April (2020): TRANSMISI Vol 22, No 1 Januari (2020): TRANSMISI Vol 21, No 4 Oktober (2019): TRANSMISI Vol 21, No 3 Juli (2019): TRANSMISI Vol 21, No 2 April (2019): TRANSMISI Vol 21, No 1 Januari (2019): TRANSMISI Vol 20, No 4 Oktober (2018): TRANSMISI Vol 20, No 3 Juli (2018): TRANSMISI Vol 20, No 2 April (2018): TRANSMISI Vol 20, No 1 Januari (2018): TRANSMISI Vol 19, No 4 Oktober (2017): TRANSMISI Vol 19, No 3 Juli (2017): TRANSMISI Vol 19, No 2 April (2017): TRANSMISI Vol 19, No 1 Januari (2017): TRANSMISI Vol 18, No 4 Oktober (2016): TRANSMISI Vol 18, No 3 Juli (2016): TRANSMISI Vol 18, No 2 April (2016): TRANSMISI Vol 18, No 1 Januari (2016): TRANSMISI Vol 17, No 4 Oktober (2015): TRANSMISI Vol 17, No 3 Juli (2015): TRANSMISI Vol 17, No 2 April (2015): TRANSMISI Vol 17, No 1 Januari (2015): TRANSMISI Vol 16, No 4 (2014): TRANSMISI Vol 16, No 3 (2014): TRANSMISI Vol 16, No 2 (2014): TRANSMISI Vol 16, No 1 (2014): TRANSMISI Vol 15, No 4 (2013): TRANSMISI Vol 15, No 3 (2013): TRANSMISI Vol 15, No 2 (2013): TRANSMISI Vol 15, No 1 (2013): TRANSMISI Vol 14, No 4 (2012): TRANSMISI Vol 14, No 3 (2012): TRANSMISI Vol 14, No 2 (2012): TRANSMISI Vol 14, No 1 (2012): TRANSMISI Vol 13, No 3 (2011): TRANSMISI Vol 12, No 3 (2010): TRANSMISI Vol 12, No 1 (2010): TRANSMISI Vol 11, No 3 (2009): TRANSMISI Vol 7, No 2 (2005): TRANSMISI Vol 13, No 4 (2011): TRANSMISI Vol 13, No 2 (2011): TRANSMISI Vol 13, No 1 (2011): TRANSMISI Vol 12, No 4 (2010): TRANSMISI Vol 12, No 2 (2010): TRANSMISI Vol 11, No 4 (2009): TRANSMISI Vol 11, No 2 (2009): TRANSMISI Vol 11, No 1 (2009): TRANSMISI VOL 10, NO 4 (2008): TRANSMISI Vol 10, No 3 (2008): TRANSMISI Vol 10, No 2 (2008): TRANSMISI Vol 10, No 1 (2008): TRANSMISI Vol 9, No 2 (2007): TRANSMISI Vol 9, No 1 (2007): TRANSMISI Vol 8, No 2 (2006): TRANSMISI Vol 8, No 1 (2006): TRANSMISI Vol 7, No 1 (2005): TRANSMISI Vol 8, No 2 (2004): TRANSMISI Vol 6, No 2 (2003): TRANSMISI More Issue