cover
Contact Name
Ramdan Satra
Contact Email
Ramdan Satra
Phone
-
Journal Mail Official
ramdan@umi.ac.id
Editorial Address
-
Location
Kota makassar,
Sulawesi selatan
INDONESIA
ILKOM Jurnal Ilmiah
ISSN : 20871716     EISSN : 25487779     DOI : -
Core Subject : Science,
ILKOM Jurnal Ilmiah is an Indonesian scientific journal published by the Department of Information Technology, Faculty of Computer Science, Universitas Muslim Indonesia. ILKOM Jurnal Ilmiah covers all aspects of the latest outstanding research and developments in the field of Computer science, including Artificial intelligence, Computer architecture and engineering, Computer performance analysis, Computer graphics and visualization, Computer security and cryptography, Computational science, Computer networks, Concurrent, parallel and distributed systems, Databases, Human-computer interaction, Embedded system, and Software engineering.
Arjuna Subject : -
Articles 10 Documents
Search results for , issue "Vol 16, No 1 (2024)" : 10 Documents clear
Deep Learning Based Technical Classification of Badminton Pose with Convolutional Neural Networks Tukino, Tukino; Pratiwi, Mutiana; Defit, Sarjon
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1951.76-86

Abstract

This research aims to identify and categorize badminton strategies using a Convolutional Neural Network (CNN) model combined with BlazePose architecture and Mediapipe Pose Solution tools, yielding understandable and practical results. The challenge of finding the best mobility strategy for badminton serves as the primary motivation for this study. The research employs an image recognition and supervised learning approach to classify poses in badminton training videos. The training data comprises various photos and images representing different badminton techniques, such as Service Technique and Smash Technique. After data processing, the CNN model is trained using the training data to identify and classify poses in badminton training videos. Testing is conducted using test data, and classification accuracy is evaluated using the CNN method. The results show that the CNN model implemented alongside BlazePose and Mediapipe Pose Solution achieves significant classification accuracy, ranging from 80% to 90%. Thus, this research presents an effective and practical method for classifying badminton strategies based on poses in training videos.
Quantifying of runC, Kata and gVisor in Kubernates Purwoko, Rahmat; Priambodo, Dimas Febriyan; Prasetyo, Arbain Nur
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1679.12-26

Abstract

The advent of container technology has emerged as a pivotal solution for application developers, addressing concerns regarding the seamless execution of developed applications during the deployment process. Various low-level container runtimes, including runC, Kata Container, and gVisor, present themselves as viable options for implementation. The judicious selection of an appropriate low-level container runtime significantly contributes to enhancing the efficiency of Kubernetes cluster utilization. To ascertain the optimal choice, comprehensive testing was conducted, encompassing both performance and security evaluations of the low-level container runtimes. This empirical analysis aids developers in making informed decisions regarding the selection of low-level container runtimes for integration into a Kubernetes cluster. The performance assessments span five key parameters: CPU performance, memory utilization, disk I/O efficiency, network capabilities, and the overall performance when executing an nginx web server. Three distinct tools—sysbench, iperf3, and Apache Benchmark—were employed to conduct these performance tests.  The findings of the tests reveal that runC exhibits superior performance across all five parameters evaluated. However, a nuanced consideration of security aspects is imperative. Both Kata Container and gVisor demonstrate commendable host isolation, presenting limited vulnerability to exploitation. In contrast, runC exposes potential vulnerabilities, allowing for exploits against the host (worker node), such as unauthorized directory creation and system reboots. This comprehensive analysis contributes valuable insights for developers, facilitating an informed decision-making process when selecting low-level container runtimes within a Kubernetes environment.
Multiclass Classification of Rupiah Banknotes Based on Image Processing Azis, Huzain; Purnawansyah, Purnawansyah; Alfiyyah, Nurul
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1784.87-99

Abstract

This research aims to classify the nominal value of Rupiah banknotes using image processing and classification methods. The research design was conducted by collecting a dataset of Rupiah banknotes consisting of 30 classes, each with 100 images. This research uses image preprocessing using Canny Segmentation to create object edges and clarify image details. The Hu Moments method, which describes pixel distribution and object shape, is used to extract special features from the image. Classification modeling is then performed using Decision Tree and Random Forest to classify banknotes based on the extracted characteristics. Model evaluation is performed by measuring accuracy, precision, recall, and f1socre performance and using cross-validation with k-fold=5. The results show that the Decision Tree method is able to classify Rupiah banknotes well. In the performance evaluation, the Decision Tree method achieved the highest accuracy of 86.83% and good precision, recall, and f1-score for several banknote classes. The Random Forest method also achieved good results, with the highest accuracy of 78.67%. The classification evaluation results show that the Decision Tree method is better than the Random forest in classifying Rupiah banknotes.
Machine Learning and Internet of Things (IoT): A Bibliometric Analysis of Publications Between 2012 and 2022 Gani, Hamdan; Damayanti, Annisa Dwi; Nurani, Nurani; Zuhriyah, Sitti; Jabir, St. Nurhayati; Gani, Helmy; Zhipeng, Feng; Rejeki, Aisyah Sri
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1700.27-37

Abstract

The implementation between machine learning and the Internet of Things (IoT) has been scientifically investigated in many studies. However, not many bibliometric studies categorize the output in this area. By keeping an eye on the publications posted on the Web of Science (WoS) platform, this study aims to give a bibliometric analysis of research on Machine Learning and IoT, identifying the state of the art, trends, and other indicators. 6.170 different articles made up the sample. The VOS viewer software was used to process the data and graphically display the results. The study examined the concurrent occurrence of publications by year, keyword trends, co-citations, bibliographic coupling, and analysis of co-authorship, countries, and institutions. several prolific authors are discovered. However, the body of literature on machine learning and IoT issues is expanding quickly; only five papers accounted for more than 2193 citations. Then, 40.34 percent of the articles from the 694 sources reviewed were published as the most important paper. At the same time, the USA is the top nation for research on this subject area. In addition to identifying gaps and promising areas for future research, this study offers insight into the current state of the art and the field of machine learning and IoT.
Classification of Correlation Patterns Based on electrocardiogram Data of Heart Defects Using the Pearson Correlation Coefficient Method Sumiati, Sumiati; Fernando, Donny; Hasoloan, Hamonangan Iman; Purnamasari, Marlia
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1927.100-107

Abstract

This study was conducted to map the relationship between a symptom and the type of heart disease, based on the results of the electrocardiogram medical record data. The purpose of this study was to apply a symptom correlation pattern based on electrocardiogram data of heart abnormalities. Where the results of this study produce values that determine symptoms that have a very close relationship with the type of heart disorder, and make an analysis to diagnose normal and abnormal heart disorders using the Pearson Correlation Coefficient (PCC) approach. The results show that the relationship between symptoms has a very strong relationship. dominant with normal heart defects is the relationship between AV conduction duration and other symptoms because the relationship between AV conduction duration and other symptoms has a very strong average level of association. symptoms also have a strong average level of association, while the relationship between other symptoms appears to have a moderate relationship and does not even have any relationship with someone who is identified as having a heart abnormality diagnosis (abnormal) and normal heart
Optimizing Bitcoin Price Predictions Using Long Short-Term Memory Algorithm: A Deep Learning Approach Khumaidi, Ali; Kusmanto, Panji; Hikmah, Nur
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1831.38-45

Abstract

Currently bitcoin is considered an investment tools, the value of bitcoin itself is unstable so it is difficult to predict which can cause losses for bitcoin traders. Some previous research shows that Long Short-Term Memory (LSTM) which is a deep learning approach as an improvement of RNN has the best performance in predicting stocks and cryptocurrencies compared to Support Vector Machine (SVM), Exponential Moving Average (EMA), and Moving Average (MA), and Seasonal Autoregressive Integrated Moving Average (SARIMA). LSTM has the disadvantage that it is difficult to understand in determining the best parameters and to obtain good results it needs strict hyperparameter adjustment. This study aims to find the best parameters in LSTM by selecting the amount of data, training data composition, batch size, epoch and the amount of prediction time and analyzing prediction performance. In this study, data collection was carried out in real time and was able to provide predictions for the next few days. The test results of the LSTM algorithm have a performance with an average accuracy of 93.69% with the parameters of the amount of bitcoin price data used is 3 years, with a percentage of train data of 85%, using 10 batch sizes, with a number of epochs 125, and the highest average accuracy rate for 7 days of prediction.
Optimizing a Fire and Smoke Detection System Model with Hyperparameter Tuning and Callback on Forest Fire Images Using ConvNet Algorithm Suryani Suryani; Suryani, Suryani; Syahlan Natsir, Muhammad
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1937.46-58

Abstract

Forest fire is a significant issue, especially for tropical countries like Indonesia. One of the impacts of forest fires is environmental pollution and damage, such as damage to flora and fauna, water, and soil. Fire detection technology is crucial as a preventive measure before the spread or expansion of fire points. Several forest fire detection systems have been developed by various research studies, with detection targets varying. Objects in the form of images are usually detected using the RGB color filtering method, but this method still results in false detections in image processing. Therefore, a classification model is built to detect fire and smoke in images using the Convolutional Neural Network (ConvNet) algorithm. In the development of the ConvNet model, a comparison of models is also conducted to assess the influence of Hyperparameter Tuning and Callbacks in optimizing the model's classification performance. The research results indicate that out of the six comparison scenarios created, the best model is obtained with 90% training data and 10% testing data, which is also optimized with Hyperparameter Tuning and Callbacks, with a Validation Accuracy of 98.18% and Validation Loss of 4.97%. This model is then implemented in the interface system.
DIET Classifier Model Analysis for Words Prediction in Academic Chatbot Astuti, Wistiani; Wibawa, Aji Prasetya; Haviluddin, Haviluddin; Darwis, Herdianti
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1598.59-67

Abstract

One prevalent conversational system within the realm of natural language processing (NLP) is chatbots, designed to facilitate interactions between humans and machines. This study focuses on predicting frequently asked questions by students using the Duel Intent and Entity Transformer (DIET) Classifier method and assessing the performance of this method. The research involves employing 300 epochs with an 80% training data and 20% testing data split. In this study, the DIET Classifier adopts a multi-task transformer architecture to simultaneously handle classification and entity recognition tasks. Notably, it possesses the capability to integrate diverse word embeddings, such as BERT and GloVe, or pre-trained words from language models, and blend them with sparse words and n-gram character-level features in a plug-and-play manner. Throughout the training process of the DIET Classifier model, data loss and accuracy from both training and testing datasets are monitored at each epoch. The evaluation of the text classification model utilizes a confusion matrix. The accuracy results for testing the DIET Classifier method are presented through four case studies, each comprising 25 text messages and 15 corresponding chatbot responses. The obtained accuracy values range from 0.488 to 0.551, F1-Score values range from 0.427 to 0.463, and precision range from 0.417 to 0.457.
Evaluation of Machine Learning Models for Predicting Cardiovascular Disease Based on Framingham Heart Study Data Suhatril, Ruddy J; Syah, Rama Dian; Hermita, Matrissya; Gunawan, Bhakti; Silfianti, Widya
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1952.68-75

Abstract

The Framingham Heart Study Community is a research community that produces data related to Cardiovascular Disease (CVD). This research applies technology to predict CVD using machine learning based on data from the Framingham Heart Study. The eight machine learning algorithms are deployed in this study, they are decision tree, naïve bayes, k-nearest neighbors, support vector machine, random forest, logistic regression, neural network, and gradient boosting.This research uses several stages of research such as load dataset, preprocessing data, data modeling, evaluation of various data modelling, and input new data.  The best performance was produced by the random forest model with an accuracy value of 0.84, a precision value of 0.84, a recall value of 0.85, an f1-score value of 0.79 and an AUC value of 0.72. The prediction generated by the proposed machine learning model is high risk or low risk of CVD.
Fall Rate Detection, Identification and Analysis Object Oriented for Elderly Safety Sudirman, Sudirman; Suyuti, Ansar; Zainuddin, Zahir; Fauzan, Arief
ILKOM Jurnal Ilmiah Vol 16, No 1 (2024)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v16i1.1654.1-11

Abstract

The aged population in Indonesia in 2021 is 30. Sixteen million people. The aged populace elderly 60 years and over reached 11.01% of the complete populace of Indonesia, which amounted to 273.88 million humans. There are ages who live on their own because of busy households with work. if there's an incident of falling elderly, a motion detection gadget is needed for monitoring the situation of the elderly at domestic. This takes a look at designing a visual synthetic intelligence hobby recognition gadget with entry from the digital camera to come across aged sports from video. take video records with the photograph Acquisition technique, Foreground Detection for changing photographs into binary, masks R-CNN to come to aware of detection items and discover the location of the incident, movement history photo, and C_motion to represent the placement of the detected object's body, SVM magnificence to categorize aged statistics falls or sports of every day residing. The experimental outcomes display that this device can come across the condensed-space version with an accuracy of ninety-seven, 50.

Page 1 of 1 | Total Record : 10