cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
JURNAL SISTEM INFORMASI BISNIS
Published by Universitas Diponegoro
ISSN : 20883587     EISSN : 25022377     DOI : -
Core Subject : Economy, Science,
JSINBIS merupakan jurnal ilmiah dalam bidang Sistem Informasi bisnis fokus pada Business Intelligence. Sistem informasi bisnis didefinisikan sebagai suatu sistem yang mengintegrasikan teknologi informasi, orang dan bisnis. SINBIS membawa fungsi bisnis bersama informasi untuk membangun saluran komunikasi yang efektif dan berguna untuk membuat keputusan yang tepat waktu dan akurat. Business intelligence sebagai dasar pengembangan dan aplikasi SINBIS menjadi kerangka kerja teknologi informasi yang sangat penting untuk membuat agar organisasi dapat mengelola, mengembangkan dan mengkomunikasikan aset dalam bentuk informasi dan pengetahuan. Dengan demikian SINBIS merupakan kerangka dasar dalam pengembangan perekonomian berbasis pengetahuan.
Arjuna Subject : -
Articles 410 Documents
Sistem Pemilihan Perumahan dengan Metode Kombinasi Fuzzy C-Means Clustering dan Simple Additive Weighting Jaya, Tri Sandhika; Adi, Kusworo; Noranita, Beta
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 1, No 3 (2011): Volume 1 Nomor 3 Tahun 2011
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (455.072 KB) | DOI: 10.21456/vol1iss3pp153-158

Abstract

Housing is one of human secondary needs. In selecting the most appropriate housing, there are lots of aspects to be considered to satisfy the costumers  want. In order to get optimal result, a system is needed to help the costumers to decide which housing fit them   most. System that will be built in this thesis is a system that supports costumers’ satisfaction in housing selection. There are 2 main stages in the  system,  namely  data  grouping  and  ranking.  Data  grouping  method  used  is  Fuzzy  C -Means  Clustering  (FCM).  Simple  Additive Weighting (SAW) is used for ranking purpose. Testing is carried out by comparing  interview result with system counting result. The testing result produces 9 cases that derive similar recommendation.Keywords : Housing selection; FCM; SAW; Recommendation; Grouping
Back Matter JSINBIS Volume 5 Nomor 2 Tahun 2015 M.Eng, Ph.D, Prof. Mustafid
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 5, No 2 (2015): Volume 5 Nomor 2 Tahun 2015
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (358.053 KB) | DOI: 10.21456/vol5iss2pp%p

Abstract

Back Matter JSINBIS Volume 5 Nomor 2 Tahun 2015
Sistem Pakar Untuk Diagnosa Penyakit Kehamilan Menggunakan Metode Dempster-Shafer Dan Decision Tree minardi, joko popo
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 3, No 3 (2013): Volume 3 Nomor 3 Tahun 2013
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21456/vol3iss3pp

Abstract

Dempster-Shafer theory is a mathematical theory of evidence based on belief functions and plausible reasoning, which is used to combine separate pieces of information. Dempster-Shafer theory an alternative to traditional probabilistic theory for the mathematical representation of uncertainty. In the diagnosis of diseases of pregnancy information obtained from the patient sometimes incomplete, with Dempster-Shafer method and expert system rules can be a combination of symptoms that are not complete to get an appropriate diagnosis while the decision tree is used as a decision support tool reference tracking of disease symptoms This Research aims to develop an expert system that can perform a diagnosis of pregnancy using Dempster Shafer method, which can produce a trust value to a disease diagnosis. Based on the results of diagnostic testing Dempster-Shafer method and expert systems, the resulting accuracy of 76%.   Keywords: Expert system; Diseases of pregnancy; Dempster Shafer
Penjadwalan Tenaga Kebidanan Menggunakan Algoritma Memetika Dodu, A. Y. Erwin; Nugraha, Deny Wiria; Putra, Subkhan Dinda
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 8, No 1 (2018): Volume 8 Nomor 1 Tahun 2018
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (573.225 KB) | DOI: 10.21456/vol8iss1pp99-106

Abstract

The problem of midwife scheduling is one of the most frequent problems in hospitals. Midwife should be available 24 hours a day for a full week to meet the needs of the patient. Therefore, good or bad midwife scheduling result will have an impact on the quality of care on the patient and the health of the midwife on duty. The midwife scheduling process requires a lot of time, effort and good cooperation between some parties to solve this problem that is often faced by the Regional Public Hospital Undata Palu Central Sulawesi Province. This research aimed to apply Memetics algorithm to make scheduling system of midwifery staff at Regional Public Hospital Undata Palu Central Sulawesi Province that can facilitate the process of midwifery scheduling as well as to produce optimal schedule. The scheduling system created will follow the rules and policies applicable in the hospital and will also pay attention to the midwife's preferences on how to schedule them according to their habits and needs. Memetics algorithm is an optimization algorithm that combines Evolution Algorithm  and Local Search method. Evolution Algorithm in Memetics Algorithm generally refers to Genetic Algorithm so that the characteristics of Memetics Algotihm are identical with  Genetic Algorithm characteristics with the addition of Local Search methods. Local Search in Memetic Algorithm aims to improve the quality of an individual so it is expected to accelerate the time to get a solution.
Particle Swarm Optimization Untuk Sistem Informasi Penjadwalan Resource Di Perguruan Tinggi Mansur, Mansur; Prahasto, Toni; Farikhin, Farikhin
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 4, No 1 (2014): Volume 4 Nomor 1 Tahun 2014
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2225.617 KB) | DOI: 10.21456/vol4iss1pp11-19

Abstract

Course timetabling management information system is a system focusing on data management resource and constraints in optimizing the use of available resources and avoid clashing in the process of making class timetabling, so that the resulting information will be effective. Results of such information may assist the college in planning the use of space, and to develop programs of study. Data resource and constraints are implemented using timetabling information system with PSO algorithm. The results of the data analysis using the PSO algorithm by combining six hard constraint and two soft constraints cannot produce an optimal solution, because there are still clashing lecturer-timeslot (soft1), but without combining both soft constraints can produce maximum solutions in the use of the room, where the solution with the best fitness value (0.333), c1(2,0), c2(2,0), w(0,2), and maximum of 10 iterations of the desired solution. The final results are timetabling management information system for resource utilization that generates class timetable information and use of the room.   Keywords : Management information system; PSO algorithm; Resource; Constraints; Course timetabling; Higher education
Deteksi Objek Terapung pada Sungai Martapura dengan Metode Haar Like Feature Menggunakan Kamera Smart Phone Saubari, Nahdi; Ansari, Rudy; Gazali, Mukhaimy
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 9, No 2 (2019): Volume 9 Nomor 2 Tahun 2019
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (539.415 KB) | DOI: 10.21456/vol9iss2pp141-148

Abstract

Martapura river is the center of Banjarmasin’s local life, especially for water transportation and its famous floating market tourism spot. Due to various floating objects in Martapura river, a method to detect those objects is needed to control the condition of the river. In general, there are several methods to detect objects such as Gaussian, Support Vector Machine (SVM), Independent Component Analysis (ICA) and the newest method called Haar Like Feature (HLF). Those first three methods often used to detect moving object, while HLF mostly used to detect human’s face. This research aimed to examine the use of HLF method to detect floating objects in Martapura river by using smartphone’s camera with the specification of 16Megapixel and 1080p resolution. The data collected with random sampling technique in two different spots in Banjarmasin at different times. Images and videos then examined using HLF method. The result shows that HLF method by using smartphone camera cannot be used to identify any floating objec
Penerapan ANP-TOPSIS untuk Pengukuran Kinerja Human ResourcesProcurement Section Kaluku, Moh Ramdhan Arif; Jie, Ferry
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 5, No 2 (2015): Volume 5 Nomor 2 Tahun 2015
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (438.795 KB) | DOI: 10.21456/vol5iss2pp119-127

Abstract

One practice is important in a company's performance is in the process of procurement. Performance of human resources in a company shows a measure of the quality of work and is used as a measure to observe the performance levels of employees in a company. The level of underperformance will have an impact on the quality of jobs that will be performed that could have a serious impact on the company. It is necessary to develop a human resources performance measurement using ANP method and TOPSIS, the procurement section of the company. This study aims to assist in the decision making process and seek alternative solutions to address the issues in order to measure the level of performance of each employee. In this study, the method used to obtain the ANP normal weight that will be used for calculations on TOPSIS method. The input parameters in the weighting process ANP is also very affecting for ranking process to be performed on TOPSIS. The input parameter is the ratio of any existing KPI indicators on procurement section. The results showed that the proposed method can be used to build a predictive performance measurement on procurement human resources section. From the research the highest performance values obtained on procurement section is 0.6936 while the lowest value was 0.3584.  
Identifikasi Citra Untuk Mengidentifikasi Jenis Daging Sapi Menggunakan Transformasi Wavelet Haar Kiswanto Kiswanto; Eko Sediyono; Suhartono Suhartono
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 1, No 2 (2011): Volume 1 Nomor 2 Tahun 2011
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (718.603 KB) | DOI: 10.21456/vol1iss2pp73-79

Abstract

In this research, conducted research on the identification of the image to  identify the type of ground beef using the Haar wavelet transform. The study was intended To check the performance of Haar wavelet in identifying the types of beef. The process  of  image  processing  is  done  by  calculating  the  value  of  R,  G  and  B  in  each  image  of  the  meat,  then  do  the normalization process to get the index value of R, G and the index B index and do the conversion from RGB to a model of HSI models to get the magnitude of the hue, saturation and intensity. The resulting value of the image processing used as input parameter verification program. The highest accuracy produced by the Haar wavelet is 80% on the kind of fresh beef, fresh frozen beef, beef rotten, rotten dried beef, while the lowest accuracy was 0% for frozen beef rotten.Keywords: Identification; Haar Wavelet Transformation
Sistem Evaluasi Jamunan Mutu Menggunakan Rule Based System Untuk Monitoring Mutu Perguruan Tinggi Hartono, Sri
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 7, No 1 (2017): Volume 7 Nomor 1 Tahun 2017
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (697.515 KB) | DOI: 10.21456/vol7iss1pp24-31

Abstract

The needs for continuous quality improvement resulting in the more complex. The research aims to develop system of quality assurance evaluation using rule based system to monitor the quality of higher education. This process of the research begins by documenting the daily activity of study program which consists of lecturer data, research data, service data, staff data, student data, and infrastructure data into a database. The data were evaluated by using rule based system  by adopting rules on quality standards of study program of National Accreditation Board for Higher Education as the knowledge base. Evaluation process was carried out by using the forward chaining methods by matching the existing data to the knowledge base to determine the quality status of each quality standard. While the reccomendation process was carried out by using the backward chaining methods by matching the results of quality status to the desired projection of quality status to determine the nearest target which can be achieved. The result of the research is system of quality assurance evaluation with rule based system that is capable of producing an output system in the form of internal evaluation report and recommendation system that can be used to monitor the quality of higher education. 
Penilaian Kinerja Pegawai Lingkungan Perguruan Tinggi dengan Metode Topsis Setyadi, Ary; Adi, Kusworo; Sugiharto, Aris
JSINBIS (Jurnal Sistem Informasi Bisnis) Vol 2, No 3 (2012): Volume 2 Nomor 3 Tahun 2012
Publisher : Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (559.616 KB) | DOI: 10.21456/vol2iss3pp139-145

Abstract

Employee performance measurement is very important for evaluation and future planning. Most of the government and private agencies are still using Daftar Penilaian Pelaksanaan Pekerjaan (DP3) to assess the performance their employees. DP3 goal is to obtain an objective consideration to employee development and career system based on job performance, formally it used to be a principal consideration material of periodic salary increases and promotions. In this research made ​​a Decision Support System (DSS) for employee performance appraisal DP3 at the college by using TOPSIS method. In this DSS ​​of which there are eight criteria in the DP3, everything is broken down into several sub criteria to get more objective assessment. Initial input of the TOPSIS method is obtained through a calculation using the AHP to find the eigen value of each criterion and the intensity. System created to describe the process of AHP and TOPSIS at each step in a matrix  that can be studied and evaluated the truth of each step in the method used. In testing, this system  is quite effective in the calculation that uses looping and selection. Keywords: TOPSIS, employee performance evaluation, DP3

Page 11 of 41 | Total Record : 410


Filter by Year

2011 2025


Filter By Issues
All Issue Vol 15, No 3 (2025): Volume 15 Number 3 Year 2025 (Publication in Progress) Vol 15, No 2 (2025): Volume 15 Number 2 Year 2025 Vol 15, No 1 (2025): Volume 15 Number 1 Year 2025 Vol 14, No 4 (2024): Volume 14 Nomor 4 Tahun 2024 Vol 14, No 3 (2024): Volume 14 Nomor 3 Tahun 2024 Vol 14, No 2 (2024): Volume 14 Nomor 2 Tahun 2024 Vol 14, No 1 (2024): Volume 14 Nomor 1 Tahun 2024 Vol 13, No 2 (2023): Volume 13 Nomor 2 Tahun 2023 Vol 13, No 1 (2023): Volume 13 Nomor 1 Tahun 2023 Vol 12, No 2 (2022): Volume 12 Nomor 2 Tahun 2022 Vol 12, No 1 (2022): Volume 12 Nomor 1 Tahun 2022 Vol 11, No 2 (2021): Volume 11 Nomor 2 Tahun 2021 Vol 11, No 1 (2021): Volume 11 Nomor 1 Tahun 2021 Vol 10, No 2 (2020): Volume 10 Nomor 2 Tahun 2020 Vol 10, No 1 (2020): Volume 10 Nomor 1 Tahun 2020 Vol 9, No 2 (2019): Volume 9 Nomor 2 Tahun 2019 Vol 9, No 1 (2019): Volume 9 Nomor 1 Tahun 2019 Vol 8, No 2 (2018): Volume 8 Nomor 2 Tahun 2018 Vol 8, No 1 (2018): Volume 8 Nomor 1 Tahun 2018 Vol 7, No 2 (2017): Volume 7 Nomor 2 Tahun 2017 Vol 7, No 1 (2017): Volume 7 Nomor 1 Tahun 2017 Vol 6, No 2 (2016): Volume 6 Nomor 2 Tahun 2016 Vol 6, No 1 (2016): Volume 6 Nomor 1 Tahun 2016 Vol 5, No 2 (2015): Volume 5 Nomor 2 Tahun 2015 Vol 5, No 1 (2015): Volume 5 Nomor 1 Tahun 2015 Vol 4, No 3 (2014): Volume 4 Nomor 3 Tahun 2014 Vol 4, No 2 (2014): Volume 4 Nomor 2 Tahun 2014 Vol 4, No 1 (2014): Volume 4 Nomor 1 Tahun 2014 Vol 3, No 3 (2013): Volume 3 Nomor 3 Tahun 2013 Vol 3, No 2 (2013): Volume 3 Nomor 2 Tahun 2013 Vol 3, No 1 (2013): Volume 3 Nomor 1 Tahun 2013 Vol 2, No 3 (2012): Volume 2 Nomor 3 Tahun 2012 Vol 2, No 2 (2012): Volume 2 Nomor 2 Tahun 2012 Vol 2, No 1 (2012): Volume 2 Nomor 1 Tahun 2012 Vol 1, No 3 (2011): Volume 1 Nomor 3 Tahun 2011 Vol 1, No 2 (2011): Volume 1 Nomor 2 Tahun 2011 Vol 1, No 1 (2011): Volume 1 Nomor 1 Tahun 2011 More Issue