cover
Contact Name
Dina Angela
Contact Email
dina_angela@ithb.ac.id
Phone
-
Journal Mail Official
jurnaltelematika@ithb.ac.id
Editorial Address
Jl. Dipati Ukur no. 80-84, Kel. Coblong, Kec. Lebak Gede, Bandung, 40132
Location
Kota bandung,
Jawa barat
INDONESIA
Jurnal Telematika
ISSN : 18582516     EISSN : 25793772     DOI : https://doi.org/10.61769/telematika
Jurnal Telematika is a scientific periodical written in Indonesian language published by Institut Teknologi Harapan Bangsa twice per year. Jurnal Telematika publishes scientific papers from researchers, academics, activist, and practicioners, which are results from scientific study and research in the field of telematics and information technology.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol. 20 No. 1 (2025)" : 5 Documents clear
Algoritme Jaringan Syaraf Tiruan pada Perangkat e-Nose untuk Klasifikasi Madu Dwi Syafi'i, Ahmad; Barata, Mula Agung; Rohmah, Roihatur
Jurnal Telematika Vol. 20 No. 1 (2025)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i1.722

Abstract

Penentuan jenis madu merupakan langkah penting guna menjaga keaslian dan mutu produk. Penelitian ini mengembangkan sistem electronic nose berbasis sensor gas MQ-3 dan MQ-135 yang merekam tiga parameter volatil utama, yaitu karbon dioksida, acetone, dan alkohol. Sebanyak 541 sampel data dinormalisasi menggunakan metode min–max, kemudian dibagi dengan skema hold-out 75 persen untuk pelatihan dan 25 persen untuk pengujian. Model klasifikasi menggunakan jaringan syaraf tiruan multilayer perceptron dengan arsitektur 3–7–3, optimizer Adam, laju pembelajaran 0,001, ukuran batch 32, dan 1000 epoch. Hasil pengujian pada 135 sampel uji menunjukkan akurasi keseluruhan sebesar 88,89. Evaluasi per kelas memperlihatkan madu hutan mencapai presisi 100, recall 100, dan F1-score 100, madu budidaya memperoleh presisi 97,1, recall 70,8, dan F1-score 82,1, sedangkan madu trigona mencapai presisi 75,0, recall 97,7, dan F1-score 84,8. Temuan ini menunjukkan bahwa kombinasi e-nose dan JST mampu mengidentifikasi madu dengan tingkat akurasi tinggi, sekaligus membuka peluang penerapan metode ini sebagai sistem deteksi cepat dalam mendukung keaslian produk madu.
Model Deep Learning untuk Face Anti-Spoofing dalam Mengatasi Domain Generalization dengan Depth Estimation dan Generative Adversarial Network Sunoto, Tio Dewantho; Setiadikarunia, Daniel; Saragih, Riko Arlando; Moses, Elia
Jurnal Telematika Vol. 20 No. 1 (2025)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i1.730

Abstract

Penggunaan biometrik wajah untuk memperoleh akses suatu sistem keamanan adalah hal yang lazim ditemukan dalam perangkat komunikasi/komputasi. Walaupun demikian, kemudahan ini berakibat kepada kerentanan terjadinya penerobosan ke dalam sistem keamanan, di mana citra wajah dapat dipalsukan dengan memanfaatkan foto atau video seseorang yang memiliki hak akses. Hal ini dapat diperburuk dengan tersedianya foto atau video seseorang di media sosial. Sistem face anti-spoofing (FAS) adalah suatu sistem yang penting untuk mendeteksi apakah citra masukan adalah citra riil atau citra palsu dalam suatu sistem biometrik yang menggunakan informasi citra wajah. Banyak metode yang sudah digunakan untuk merealisasikan sistem ini, baik dengan pendekatan berbasis metode hand-crafted maupun deep learning (DL). Walaupun demikian, penelitian mengenai perbedaan distribusi antara dataset uji dengan dataset latih masih jarang dilakukan. Artikel ini membahas penggunaan model berbasis deep learning (DL) untuk aplikasi face anti-spoofing (FAS). Penelitian ini mengimplementasikan model menggunakan estimasi peta kedalaman untuk menemukan fitur diskriminatif dan generative adversarial network (GAN) untuk mengatasi isu perbedaan distribusi yang menggunakan pendekatan berupa pembangkitan (pembentukan) data. Untuk model yang diimplementasikan dengan skenario simulasi intraset, hasil pengujian untuk dua dataset publik, yaitu NUAA dan CASIA, memberikan hasil terbaik dari segi metrik half total error rate (HTER), berturut-turut 2,97% dan 2,7%. Sementara simulasi untuk adanya perbedaan antara karakteristik dataset uji dengan dataset latih, hasil dengan menerapkan GAN untuk meningkatkan kemampuan generalisasi model, dapat menurunkan bonafide presentation classification error rate (BPCER) sebesar 9,75%.
Prediksi Besar Daya Listrik dari Gelombang Laut Sawu Menggunakan Bidirectional Long Short-Term Memory (Bi-LSTM) Safira, Icha Dwi; Novitasari, Dian Candra Rini; Ulinnuha, Nurissaidah; Setiawan, Fajar
Jurnal Telematika Vol. 20 No. 1 (2025)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i1.742

Abstract

Several islands in East Nusa Tenggara Province (NTT) are underdeveloped areas with insufficient electrification. Therefore, renewable energy power plants are needed, namely Oscillating Water Column Technology Ocean Wave Power Plants (PLTGL-OWC). The objective of this study is to determine the performance of the bidirectional long short-term memory (Bi-LSTM) method in predicting the potential power generated from the height, length, and period of the Sawu Sea waves in NTT using PLTGL-OWC. This study utilises Sawu Sea wave data collected every 12 hours over 9 months. Bi-LSTM is used in this study because it can overcome the vanishing Gradient problem by utilising both the forward layer and the backward layer, making it more effective in solving complex issues, such as time series prediction. This study conducted tests on hyperparameter batch size and hidden layer node configurations. The smallest mean absolute percentage error (MAPE) prediction values obtained were 9.1943% for the wave height parameter, 11.3585% for the wave length parameter, and 7.1485% for the wave period parameter. It means that the Bi-LSTM method is suitable for predicting the electrical power generated by the PLTGL-OWC in the Sawu Sea, as the height and period parameters fall within the MAPE < 10% category, and the length parameter falls within the MAPE 10-20% category. The average electrical power generated is 2,639,865.948 watts per day over a 31-day period. The Sawu Sea has the potential to serve as a renewable energy source in the NTT region.
Desain Sistem Peringatan Kualitas Udara Menggunakan NodeMCU dan Platform IoT Hermawan, Rangga Bimo; ., Setiyono
Jurnal Telematika Vol. 20 No. 1 (2025)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i1.745

Abstract

Peningkatan polusi udara di berbagai wilayah menuntut adanya sistem pemantauan kualitas udara yang mampu memberikan informasi secara real-time dan mudah diakses oleh masyarakat. Penelitian ini membahas desain sistem peringatan kualitas udara berbasis NodeMCU dan platform Internet of Things (IoT) sebagai solusi pemantauan yang sederhana, murah, dan efisien. Sistem ini dirancang dengan sensor gas (MQ-series) untuk mendeteksi konsentrasi polutan, modul NodeMCU ESP8266 sebagai pengolah data dan penghubung ke jaringan, serta platform IoT Blynk untuk menampilkan data secara daring dalam bentuk grafik, notifikasi, dan indikator status kualitas udara. Hasil pengujian menunjukkan bahwa sistem mampu menampilkan perubahan kualitas udara secara real-time dengan tingkat akurasi yang memadai dibandingkan alat ukur referensi. Sistem juga dapat mengirimkan notifikasi peringatan otomatis saat kualitas udara melewati ambang batas tertentu. Keterbatasan penelitian ini mencakup sensitivitas sensor terhadap lingkungan dan keterlambatan data saat koneksi internet tidak stabil. Penelitian ini masih terbatas pada penggunaan sensor MQ-135, DHT22, dan LDR, sementara indikator kualitas udara internasional mencakup PM2.5, PM10, CO, NO₂, SO₂, dan O₃. Oleh karena itu, diperlukan penambahan sensor partikel debu dan gas spesifik agar sistem lebih representatif terhadap standar WHO sehingga masih terbuka peluang pengembangan agar lebih informatif dan lengkap.
Klasifikasi Terawasi Anomali Suara Kipas Industri Menggunakan Jaringan Saraf Tiruan dan Fitur Akustik Rekayasa Thenata, Angelina Pramana; ., Ranny; Hakim, Bhustomy; Kaunang, Fergie Joanda
Jurnal Telematika Vol. 20 No. 1 (2025)
Publisher : Yayasan Petra Harapan Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61769/telematika.v20i1.772

Abstract

Penelitian ini menggunakan pendekatan supervised learning berbasis jaringan saraf untuk deteksi anomali pada sistem kipas industry. Dengan subset data FAN dari MIMII (malfunctioning industrial machine investigation and inspection) dataset dengan 530 rekaman berlabel (383 normal dan 147 abnormal), penelitian ini mengekstraksi fitur akustik yang meliputi mel-frequency cepstral coefficients (MFCC), spectral descriptor (centroid, roll off), serta temporal measures (zero-crossing rate, autocorrelation). Uji statistik univariat menunjukkan sejumlah koefisien MFCC dan fitur domain waktu berbeda signifikan antar kelas (p < 0,05). Model jaringan saraf feed-forward dengan dua lapisan tersembunyi berukuran 64 unit (aktivasi ReLU) dan regularisasi dropout dilatih menggunakan stratified cross validation dengan 5-fold sehingga menghasilkan nilai F1 rata-rata sebesar 89,9%. Penggunaan beberapa nilai ambang (τ ∈ {0,3–0,7}) menegaskan kekokohan model yang terlihat pada hasil data uji dengan nilai ambang terpilih adalah τ = 0,5 yang mencapai precision sebesar 100%, recall = 93,10%, F1 = 96,43%, dan akurasi = 98,11% (hasil identik diperoleh pada τ = 0,6–0,7; sementara τ = 0,3 memberikan recall lebih tinggi). Model juga menghasilkan nilai AUC-ROC sebesar 0,9978 yang mendekati ideal dan menunjukkan daya diskriminasi lintas-ambang yang sangat baik. Temuan ini memperlihatkan bahwa penggabungan fitur akustik yang dapat diinterpretasikan dengan pengklasifikasi saraf yang ringkas memungkinkan deteksi anomali non-invasif yang akurat untuk penerapan Industri 4.0 dengan kebutuhan perangkat keras minimal.

Page 1 of 1 | Total Record : 5