cover
Contact Name
Tole Sutikno
Contact Email
ijece@iaesjournal.com
Phone
-
Journal Mail Official
ijece@iaesjournal.com
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Electrical and Computer Engineering
ISSN : 20888708     EISSN : 27222578     DOI : -
International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world.
Articles 6,301 Documents
Intrusion detection based on generative adversarial network with random forest for cloud networks Rosline, Gnanam Jeba; Rani, Pushpa
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2491-2498

Abstract

The development of cloud computing enables individuals and organizations to access a wide range of online programs and services. Because of its nature, numerous users can access and distribute cloud infrastructure. In cloud computing several security threats change the data and operations. A network's ability to detect malicious activity and possible threats is greatly aided by intrusion detection. To solve these issues, intrusion detection based on generative adversarial network with random forest (GAN-RF) for cloud networks is introduced. The function of the generative adversarial networks (GANs) based network abnormality recognition system is evaluated. It uses the CICIDS2018 dataset to detect intrusion. GAN is utilized to improve network anomaly detection in conjunction with an ensemble random forest (RF) classifier. The GAN-RF model achieved 95.01% of accuracy for intrusion detection and obtain better recall and F1-score. Extensive assessments and valuations illustrate the efficiency of the GAN-RF approach in accurately identifying network issues.
Advancing network security: a comparative research of machine learning techniques for intrusion detection Rysbekov, Shynggys; Aitbanov, Abylay; Abdiakhmetova, Zukhra; Kartbayev, Amandyk
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2271-2281

Abstract

In the current digital era, the advancement of network-based technologies has brought a surge in security vulnerabilities, necessitating complex and dynamic defense mechanisms. This paper explores the integration of machine learning techniques within intrusion detection systems (IDS) to tackle the intricacies of modern network threats. A detailed comparative analysis of various algorithms, including k-nearest neighbors (KNN), logistic regression, and perceptron neural networks, is conducted to evaluate their efficiency in detecting and classifying different types of network intrusions such as denial of service (DoS), probe, user to root (U2R), and remote to local (R2L). Utilizing the national software laboratory knowledge discovery and data mining (NSL-KDD) dataset, a standard in the field, the study examines the algorithms’ ability to identify complex patterns and anomalies indicative of security breaches. Principal component analysis is utilized to streamline the dataset into 20 principal components for data processing efficiency. Results indicate that the neural network model is particularly effective, demonstrating exceptional performance metrics across accuracy, precision, and recall in both training and testing phases, affirming its reliability and utility in IDS. The potential for hybrid models combining different machine learning (ML) strategies is also discussed, highlighting a path towards more robust and adaptable IDS solutions.
Target image validation modeling using deep neural network algorithm Mubarakah, Naemah; Sihombing, Poltak; Efendi, Syahril; Fahmi, Fahmi
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2042-2054

Abstract

Research on image validation models is an interesting topic. The application of deep learning (DL) for object detection has been demonstrated to effectively and efficiently address the challenges in this field. Deep neural networks (DNN) are deep learning algorithms capable of handling large datasets and effectively solving complex problems due to their robust learning capacity. Despite their ability to address complex problems, DNN encounter challenges related to the necessity for intricate architectures and a large number of hidden layers. The objective of this research is to identify the most effective model for achieving optimal performance in image validation. This study investigates target image validation using DNN algorithms, examining architectures with 3, 4, 5, and 6 hidden layers. This study also evaluates the performance of image validation across various activation functions, batch sizes, and numbers of neurons. The results of the study show that the best performance for image validation is achieved using the Leaky-ReLU and Sigmoid activation functions, with a batch size of 64, and an architecture consisting of 3 hidden layers with neuron sizes of 256, 128, and 64. This model is capable of providing real-time target image validation with an accuracy of up to 94.31%.
Routing mechanism ensuring congestion free communication in wireless sensor networks enabled by internet of things for applications in smart healthcare kiran, Kasi Venkata; Rao, T. Srinivasa
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp2874-2887

Abstract

Recently, the architecture of internet of things (IoT) has been applied towards gathering physical, biological, and dynamic signs of the patients within consumer-oriented electronic-health or health services. In these healthcare systems, various therapeutic sensors are placed on patients to monitor vital signs. However, the process of collecting data in IoT-enabled wireless sensor networks (WSNs) often faces congestion issues, resulting in packet loss, reduced reliability, and decreased throughput. To tackle this challenge, this proposed paper recommends a distributed congestion control algorithm tailored specifically representing IoT-enabled WSNs used in healthcare contexts. The suggested approach improves congestion by employing a priority-based data routing strategy and introduces the precedence queue- based scheduling method to improve reliability. Then the effectiveness of this congestion control process is analyzed statistically, and its performance is verified across extensive simulations and real-life experiments. This solution shows potential for applications like early warning systems for identifying peculiar heart rates, blood pressure, electromyography (EMG), and electrocardiogram (ECG) in hospital or home care settings, thus advancing the current diagnosis capabilities.
Artificial intelligence for automatic moderation of textual content in online chats and social networks Liaskovska, Solomiia; Bacarra, Rex; Martyn, Yevhen; Baidych, Volodymyr; Alsayaydeh, Jamil
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp3396-3409

Abstract

The article explores fundamental techniques for converting text into numerical data for machine learning algorithms. It meticulously examines various methods, including word vector representation via neural networks like Word2Vec, and explains the principles behind linear models such as logistic regression and support vector machines. Convolutional neural networks (CNN) and long short-term memory (LSTM) methods are also discussed, covering their components, mechanisms, and training processes. The research extends to developing and testing software for spam detection, hate speech identification, and recognizing offensive language. Using two datasets—one for labeled text messages and another for Twitter posts—the study analyzes data to address challenges like imbalanced data. A comparative analysis among linear models, deep neural networks, and single-layer models, using pre-trained bidirectional encoder representations from transformers (BERT) network, reveals promising results. The convolutional neural network stands out with a remarkable accuracy of 0.95. The study also adapts neural network architectures for hate speech and offensive language classification.
Analysis of geothermal technology development in the Colombian energy transition to 2050 using system dynamics Carreño, Diego Alberto; Dyner, Isaac; Sanint, Enrique Ángel; Aristizábal, Andrés Julián
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp2523-2533

Abstract

This research analyzes the current and future prospects of geothermal energy in Colombia using a system dynamics model. The study focuses on evaluating geothermal potential linked to hydrothermal systems, surface manifestations like geysers, and areas near volcanoes. The model, projecting up to 2050, offers a comprehensive assessment of national geothermal potential, considering technical, economic, regulatory, and social factors that influence its integration into the energy matrix. Key findings highlight the need for adjustments to the existing regulatory framework, which currently lacks sufficient incentives for geothermal project development. Additionally, the study underscores the importance of implementing stronger government policies and incentives to promote this renewable energy source. Proper social and environmental management, with active involvement of local communities, is also identified as crucial for project success. The system dynamics approach effectively models the complex interrelationships between variables shaping the future of geothermal energy in Colombia. The developed model serves as a novel tool for technological foresight in this strategic field, identifying obstacles and opportunities to unlock Colombia's significant geothermal potential and providing a systemic perspective on this critical issue for the national energy transition.
Indoor navigation for mobile robots based on deep reinforcement learning with convolutional neural network Dang, Khoa Nguyen; Thi, Van Tran; Thang, Nguyen Van
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp2748-2757

Abstract

The mobile robot is an intelligent device that can achieve many tasks in life. For autonomous, navigation based on the line on the ground is often used because it helps the robot to move along a predefined path, simplifies the path planning, and reduces the computational load. This paper presents a method for navigating the four-wheel mobile robot to track a line based on a deep Q-network as a control algorithm to desire the action of the mobile robot and a camera as a feedback sensor to detect the line. The control algorithm uses a convolution neural network (CNN) to generate the mobile robot action, defined as an agent of deep Q-network. CNN uses images from the camera to define the state of the deep Q network. The simulations are performed based on Gazebo software which includes a 3D environment, mobile robot model, line, and Python programming. The results demonstrate the high-performance tracking of mobile robots with complex line trajectories, achieving errors of less than 100 px, which is compared with the traditional vision method (VNS), the MSE of the proposal method is 0.0264 lower than VNS with 0.0406. Showcases proved convincingly that effectiveness suggested a control approach.
Evaluating the feasibility of a photovoltaic-wind-diesel-battery hybrid microgrid for sustainable off-grid electrification in Dakhla, Morocco Fennane, Sara; Kacimi, Houda; Mabchour, Hamza; ALtalqi, Fatehi; Echchelh, Adil
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp2655-2668

Abstract

Hybrid renewable energy systems (HRES) present a promising solution for improving energy reliability and reducing costs in remote, off-grid areas. This study explores the feasibility of implementing an HRES in Dakhla, Morocco, where conventional electrical infrastructure is lacking. By integrating photovoltaic (PV) panels, wind turbines, diesel generators, and battery storage, this study aims to optimize energy resource management while balancing technical performance and economic viability. Using real- world data on energy consumption, climatic conditions, and installation constraints, advanced simulation tools such as HOMER were employed to evaluate both technical and economic parameters. The objective was to minimize the cost of energy (COE) while ensuring reliability, availability, and a high renewable fraction. The results, compared with optimization algorithms like genetic algorithm (GA), particle swarm optimization (PSO), and simulated annealing (SA), revealed the PV-wind-diesel-battery configuration as the most cost-effective solution. This configuration resulted in a net present cost (NPC) of $829,380, a COE of $0.160/kWh, and minimal CO2 emissions of 54.9 kg/year. The findings highlight the viability of this hybrid microgrid as a sustainable off-grid electrification solution and emphasize the role of renewable energy in addressing global energy challenges.
Smart chatbot for surveys by convolutional networks speech recognition Jimenez-Moreno, Robinson; Baquero, Javier Eduardo Martínez; Umaña, Luis Alfredo Rodriguez
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp3410-3417

Abstract

This paper details the development of an innovative voice chatbot interface specifically designed for evaluating user options using a Likert scale by color. The core of this interface is designing a convolutional neural network architecture, which has been trained with MEL spectrogram inputs from seven possible words for each answer. These spectrograms are crucial in capturing the audio features necessary for effective voice recognition and establishing the interactions that occur between the chatbot and the user, allowing the convolutional network to learn and distinguish between different types of user responses accurately. During the training phase, the convolutional neural network achieved an accuracy rate of 91.4%, indicating its robust performance in processing and interpreting voice commands. The interface was tested in a controlled environment, with a group of ten users and a survey of 5 questions, where it achieved a perfect detection accuracy of 100%. The results demonstrate the system's capacity for natural user interaction by voice and employing a free text to speech (TTS) algorithm for the chatbot voice.
A novel convolutional neural network architecture for Alzheimer’s disease classification using magnetic resonance imaging data Abuowaida, Suhaila; Mustafa, Zaid; Aburomman, Ahmad; Alshdaifat, Nawaf; Iqtait, Musab
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp3519-3526

Abstract

Accurate categorization of Alzheimer’s disease is crucial for medical diagnosis and the development of therapeutic strategies. Deep learning models have shown significant potential in this endeavor; however, they often encounter difficulties due to the intricate and varied characteristics of Alzheimer’s disease. To address this difficulty, we suggest a new and innovative architecture for Alzheimer’s disease classification using magnetic resonance data. This design is named Res-BRNet and combines deep residual and boundary-based convolutional neural networks (CNNs). Res-BRNet utilizes a methodical fusion of boundary-focused procedures within adapted spatial and residual blocks. The spatial blocks retrieve information relating to uniformity, diversity, and boundaries of Alzheimer’s disease, although the residual blocks successfully capture texture differences at both local and global levels. We conducted a performance assessment of Res-BRNet. The Res-BRNet surpassed conventional CNN models, with outstanding levels of accuracy (99.22%). The findings indicate that Res-BRNet has promise as a tool for classifying Alzheimer’s disease, with the ability to enhance the precision and effectiveness of clinical diagnosis and treatment planning

Filter by Year

2011 2026


Filter By Issues
All Issue Vol 16, No 1: February 2026 Vol 15, No 6: December 2025 Vol 15, No 5: October 2025 Vol 15, No 4: August 2025 Vol 15, No 3: June 2025 Vol 15, No 2: April 2025 Vol 15, No 1: February 2025 Vol 14, No 6: December 2024 Vol 14, No 5: October 2024 Vol 14, No 4: August 2024 Vol 14, No 3: June 2024 Vol 14, No 2: April 2024 Vol 14, No 1: February 2024 Vol 13, No 6: December 2023 Vol 13, No 5: October 2023 Vol 13, No 4: August 2023 Vol 13, No 3: June 2023 Vol 13, No 2: April 2023 Vol 13, No 1: February 2023 Vol 12, No 6: December 2022 Vol 12, No 5: October 2022 Vol 12, No 4: August 2022 Vol 12, No 3: June 2022 Vol 12, No 2: April 2022 Vol 12, No 1: February 2022 Vol 11, No 6: December 2021 Vol 11, No 5: October 2021 Vol 11, No 4: August 2021 Vol 11, No 3: June 2021 Vol 11, No 2: April 2021 Vol 11, No 1: February 2021 Vol 10, No 6: December 2020 Vol 10, No 5: October 2020 Vol 10, No 4: August 2020 Vol 10, No 3: June 2020 Vol 10, No 2: April 2020 Vol 10, No 1: February 2020 Vol 9, No 6: December 2019 Vol 9, No 5: October 2019 Vol 9, No 4: August 2019 Vol 9, No 3: June 2019 Vol 9, No 2: April 2019 Vol 9, No 1: February 2019 Vol 8, No 6: December 2018 Vol 8, No 5: October 2018 Vol 8, No 4: August 2018 Vol 8, No 3: June 2018 Vol 8, No 2: April 2018 Vol 8, No 1: February 2018 Vol 7, No 6: December 2017 Vol 7, No 5: October 2017 Vol 7, No 4: August 2017 Vol 7, No 3: June 2017 Vol 7, No 2: April 2017 Vol 7, No 1: February 2017 Vol 6, No 6: December 2016 Vol 6, No 5: October 2016 Vol 6, No 4: August 2016 Vol 6, No 3: June 2016 Vol 6, No 2: April 2016 Vol 6, No 1: February 2016 Vol 5, No 6: December 2015 Vol 5, No 5: October 2015 Vol 5, No 4: August 2015 Vol 5, No 3: June 2015 Vol 5, No 2: April 2015 Vol 5, No 1: February 2015 Vol 4, No 6: December 2014 Vol 4, No 5: October 2014 Vol 4, No 4: August 2014 Vol 4, No 3: June 2014 Vol 4, No 2: April 2014 Vol 4, No 1: February 2014 Vol 3, No 6: December 2013 Vol 3, No 5: October 2013 Vol 3, No 4: August 2013 Vol 3, No 3: June 2013 Vol 3, No 2: April 2013 Vol 3, No 1: February 2013 Vol 2, No 6: December 2012 Vol 2, No 5: October 2012 Vol 2, No 4: August 2012 Vol 2, No 3: June 2012 Vol 2, No 2: April 2012 Vol 2, No 1: February 2012 Vol 1, No 2: December 2011 Vol 1, No 1: September 2011 More Issue