cover
Contact Name
Basri
Contact Email
unasman.lppm@gmail.com
Phone
-
Journal Mail Official
jurnalilmiahilmukomputer@gmail.com
Editorial Address
-
Location
Kab. polewali mandar,
Sulawesi barat
INDONESIA
Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar
ISSN : 2442451X     EISSN : 25033832     DOI : -
Core Subject : Science,
Computer Science Scientific Journal is published 2 (two) times in a year with the frequency of publication every 6 months in March and September. This journal contains research articles, scientific studies and social services related to Computer Science.
Arjuna Subject : -
Articles 165 Documents
CLUSTERING NILAI ENGLISH SUNSET MAHASISWA MANGGUNAKAN METODE K-MEANS PADA LEMBAGA BAHASA DAN PENGEMBANGAN KARAKTER (LBPK) UNASMAN salmawati, Salmawati; Rendi, Rendi; Qashlim, Akhmad
JURNAL ILMU KOMPUTER Vol 10 No 1 (2024): Edisi April
Publisher : LPPM Universitas Al Asyariah Mandar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35329/jiik.v10i1.312

Abstract

The UNASMAN Language and Character Development Institute (LBPK) is used by all UNASMAN students to improve their English skills so they can continue their studies abroad and as alumni can later compete in the world of work with other alumni both nationally and internationally. This research aims to group student scores in the English Sunset program at the Unasman Language and Character Development Institute (LBPK) using the K-Means method. The K-Means method was chosen because of its effective ability to group data based on similarity of attributes, making it possible to identify groups of students with similar value characteristics. Student score data is collected, processed and analyzed using the K-Means algorithm to determine the optimal number of clusters. The research results show that students can be grouped into three main clusters: students with high scores, medium scores, and low scores. This information provides valuable insight for LBPK in designing more targeted teaching strategies and providing additional support for student groups in need. Feasibility analysis from a technological and operational perspective shows that this system can be implemented with adequate infrastructure and sufficient training support for staff and lecturers. This research confirms that the K-Means method can be used effectively to improve the qualitys of learning at LBPK Unasman.
ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KEPERCAYAAN DALAM MENGGUNAKAN E-COMMERCE SHOPEE DI MAJENE SULAWESI BARAT Lestari, Ayu; Sfenrianto
JURNAL ILMU KOMPUTER Vol 10 No 2 (2024): Edisi September
Publisher : LPPM Universitas Al Asyariah Mandar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35329/jiik.v10i2.319

Abstract

Maraknya kasus penipuan belanja online membuat sebagian masyarakat khususnya di daerah Majene, Sulawesi Barat takut untuk melakukan transaksi secara online. Masyarakat cenderung berbelanja langsung di pasar, atau mereka memesan barang di penjual yang mereka kenal baik. Kepercayaan konsumen terhadap suatu produk atau jasa dipengaruhi oleh banyak hal terkait produk tersebut diantaranya manfaat, harga, merk, dan lain-lain. Kepercayaan konsumen pada e-commerce atau juga online trust dipengaruhi ketika melakukan transaksi barang atau jasa yang diinginkan sesuai dengan yang diharapkan. Penelitian ini menggunakan metode kuesioner dan mengambil sample sebanyak 150 responden. Penelitian ini menggunakan SmartPls untuk menghitung allgoritma dari 150 responden dan mempunyai 5 hipotesis. Dari kelima hipotesis tersebut ada 2 hipotesis yang diterima yaitu E-Commerce Knowledge dan Perceived Risk. Untuk penelitian lebih lanjut dengan model penelitian ini diharapkan diuji ke daerah lain dan jumlah responden diperbanyak.
PENERAPAN ALGORITMA NAIVE BAYES BERBASIS FORWARD SELECTION UNTUK MEMPREDIKSI PENJUALAN MOBIL BEKAS annur, haditsah; Moh.Efendi Lasulika
JURNAL ILMU KOMPUTER Vol 10 No 2 (2024): Edisi September
Publisher : LPPM Universitas Al Asyariah Mandar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35329/jiik.v10i2.320

Abstract

Cars are one of the vehicles that are the daily needs of the people, not only the use of new cars is in demand, but now used cars are also in great demand because the quality of used cars is still good and the many types of used cars are sold in the market. The aim of the researchers is to increase public interest in switching to buying used cars. This study uses data mining methods, one of which is prediction using the Naive Bayes algorithm as an algorithm that uses probabilistic and statistical methods to predict the future, besides that the data is also processed using forward selection feature selection which aims to reduce the level of complexity of a classification algorithm while increasing accuracy. The research data used were 2318 records, in this study an experiment was carried out with the accuracy results obtained using split validation on the naive Bayes algorithm of 96.98% and then another experiment was carried out to obtain accurate results using split validation on the naive bayes algorithm based on forward selection of 97.82 %. Thus the naive Bayes algorithm based on forward selection is suitable for predicting, as well as being used for handling in the future that there are still many used cars that are of interest to the public..
gregregr: dfgfd admin, admin
JURNAL ILMU KOMPUTER Vol 10 No 1 (2024): Edisi April
Publisher : LPPM Universitas Al Asyariah Mandar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35329/jiik.v10i2.339

Abstract

fdgfdg
SISTEM INFORMASI PEDESAAN TERINTEGRASI BERBASIS SPASIAL (STUDI KASUS DESA PATAMPANUA) Kahpi, Ashabul; Zainuddin, Zahir; Latief Arda, Abdul
JURNAL ILMU KOMPUTER Vol 6 No 1 (2020): Edisi April
Publisher : LPPM Universitas Al Asyariah Mandar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35329/jiik.v6i1.237

Abstract

Penelitian ini mengimplementasikan sistem informasi geografis untuk membangun Informasi Pedesaan Terintegrasi Berbasis Spasial. Tujuan dari penelitian ini adalah Untuk membangun sistem informasi pedesaan yang dapat membantu menyebarkan informasi desa dan Untuk membangun sebuah sistem informasi desa yang memetakan potensial desa patampanua kecamatan matakali kabupaten polewali mandar. Dalam pembuatan sistem Informasi ini telah mengimplementasikan API Map box API Map box adalah sebuah web service yang menyediakan informasi tentang geocoding dan direction dari dua buah node. Hasil penelitian ini merupakan Pembangunan Sistem Informasi Pedesaan Terintegrasi Berbasis Spasial dimana sistem Pengolahan data pada Sistem Informasi Geografis memberikan informasi dalam bentuk informasi mengenai keadaan yang ada di desa dan Hasil implementasi sistem informasi geografis dengan pemanfaatan Map box API dapat memetakan potensial desa patampanua kecamatan matakali kabupaten polewali mandar.