cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Applied Power Engineering (IJAPE)
ISSN : 22528792     EISSN : 27222624     DOI : -
Core Subject : Engineering,
International Journal of Applied Power Engineering (IJAPE) focuses on the applied works in the areas of power generation, transmission and distribution, sustainable energy, applications of power control in large power systems, etc. The main objective of IJAPE is to bring out the latest practices in research in the above mentioned areas for efficient and cost effective operations of power systems. The journal covers, but not limited to, the following scope: electric power generation, transmission and distribution, energy conversion, electrical machinery, sustainable energy, insulation, solar energy, high-power semiconductors, power quality, power economic, FACTS, renewable energy, electromagnetic compatibility, electrical engineering materials, high voltage insulation technologies, high voltage apparatuses, lightning, protection system, power system analysis, SCADA, and electrical measurements.
Arjuna Subject : -
Articles 530 Documents
The application potential of net zero energy building using rooftop photovoltaics case study of apartments in Gorontalo Province Djafar, Abdi Gunawan; Pratiwi, Niniek; Mohamad, Yasin; Zhai, Zhiqiang John
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp743-751

Abstract

Gorontalo Province is one of the developing regions in Indonesia. The province has been actively building apartments since 2009. The construction increases population density and energy use intensity. Consequently, demand for electricity power rises. Renewable energy such as rooftop photovoltaics has the potential as a power source for the apartments, considering the abundant solar radiation in Gorontalo which is located near the equator line. Three apartments representing three levels of the inhabitant’s income are selected as study case for the application of photovoltaic (PV) on roof to achive net zero energy building. Simulation of PV energy to power the buildings is conducted using photovoltaic geographical information system (PVGIS). By utilizing monthly electrical bill data, it is found that PV on roof is sufficient to cover the building energy demand and achieve net zero energy building (NZEB). However, there is uncertainty of the fluctuation of energy demand due to the tenant’s energy consumption behaviour. The consumption intensity is limited only by the installed power on each apartment unit. PV on roof alone is unable to provide the need if it is employed to power the unit to the maximum extent.
Study of the development of tandem solar cells to achieve higher efficiencies Mishra, Debani Prasad; Sahu, Jayanta Kumar; Subudhi, Umamani; Sahoo, Arun Kumar; Salkuti, Surender Reddy
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp647-655

Abstract

Tandem solar cells are the brand-new age revolution within the photovoltaic (PV) enterprise thanks to their higher power conversion efficiency (PCE) capability as compared to single-junction solar cells, which are presently dominating, however intrinsically restrained. With the appearance of steel halide perovskite absorber substances, manufacturing extremely efficient tandem solar cells at an inexpensive price can profoundly regulate the future PV landscape. It has been formerly seen that tandem solar cells primarily based on perovskite have confirmed that they can convert mild more efficiently than stand-alone sub-cells. To reap PCEs of greater than 30%, numerous hurdles have to be addressed, and our understanding of this interesting era has to be accelerated. On this, a technique of aggregate of substances was followed and via a modified numerical technique, it was decided what preference of substances for the pinnacle and bottom sub-cell consequences in a better fee of electricity conversion efficiency (PCE). Through this study, it was discovered that the use of germanium telluride (GeTe) backside subcellular together with perovskite (MAPbI3-xClx) as pinnacle subcell can offer an excessive performance of 46.64% compared to a tandem mobile with perovskite (MAPbI3)/CIGS and perovskite (MAPbI3)/GeTe which produce decrease efficiencies. SCAPS-1D was used to evaluate and simulate the overall performance of the developed tandem cells.
Optimum control and design of a small hydro power plant for agriculture investment in Iraqi desert Hameed, Jamal Ahmed; Atyia, Thamir Hassan; Jaf, Saba Fadhil Ahmed; Abdulkareem, Zubaidah Ghaze; Hasan, Ghanim Thiab
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp560-568

Abstract

The aim of this paper is to conduct a mathematical and physical analysis to get a systematic treatment of design parameters and thus optimize water wheels. By today's standards, one finds empirical formulas instead, which take into account the practical experience of previous constructions, estimates of particular wheelbase shapes and sizes. So, based on the basic design and optimization standards for water wheels implementation, this paper attempts to design a water wheel power source in desert areas. Since the water wheels mainly use the gravitational force of water, there is only a slight hydrodynamic power losses. In addition to the high torque due to the large inertia of the water wheel. The obtained results indicate that the optimum operating range of the trailing water wheels is at a diameter of (2-7 m) and the Q water flow of about (0.1 m3/s). So, it can conclude that the implementing design has good efficiency and offer an economic benefit when use for the agriculture investment in desert areas.
Enhanced multi-mode control of Z-source virtual synchronous generator for photovoltaic systems using fuzzy logic controller Rafi, Vempalle; Dhal, Pradyumna Kumar; Vali, Shaik Hussain; Krishna, Sadhu Radha; Suryavalli, Uppuluri; Prakash, S. Vinoth John
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp701-711

Abstract

An enhanced multi-mode control solution for a Z-source virtual synchronous generator (ZVSG) that makes use of a fuzzy logic controller (FLC) is proposed by this study for use in photovoltaic (PV) systems. As a potential grid integration option for PV systems, the ZVSG has great potential due to its steady and adjustable power production. A stable voltage and frequency output can be maintained by the ZVSG when it is running in a variety of modes, such as grid-connected, standalone, and islanding, according to the control approach that has been provided. The FLC is used for the purpose of controlling the switching frequency of the ZVSG as well as the DC-link voltage. The performance of the ZVSG is improved by the FLC-based control approach that has been proposed. This technique reduces the steady state error and offers a rapid dynamic response. The results of the simulation show that the recommendation for a control approach improves the performance of the ZVSG across a wide variety of operating modes and load conditions.
Minimizing the switching losses in the SiC MOSFET by using buried oxide Mutlaq, Ali Hlal; Faraj, Sura Hamad; Zaidan, Majeed Rashid; Hasan, Ghanim Thiab; Names, Ahmed Saad
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp613-619

Abstract

For optimizing the efficiency of the power switching devices, it is important to reduce the switching power losses. One method to minimize the switching power losses is to reduce the gate drain charge (QGD). In this paper, a 1.2 kV SiC MOSFET device with a buried oxide has been proposed to minimize QGD. The proposed design has been conducted by using the TCAD simulation program. The on-resistance (Ron,sp), QGD have been measured and analyzed based on the width and thickness of the buried oxide layer and compared with the measurement of traditional SiC MOSFET. The obtained results indicate that the QGD of 1.2 kV SiC MOSFET with buried oxide with WBO of 0.25 μm and TBO of 0.3 μm was reduced to about 31.3% which mean a minimize of power losses. The comparison results indicate that the proposed device with a buried oxide layer can be effectively used as an optimum solution for minimizing the power switching losses.
Design and analysis of two switch DC-DC converters for E-vehicle applications Kathiresan, Jayanthi; Jothimani, Gnanavadivel
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp522-532

Abstract

A non-isolated DC-DC converter topology is proposed in this paper, which is distinguished by its superior performance and reduced component count in comparison to conventional converter designs. The suggested architecture is especially appropriate for applications demanding a large voltage step-up since it achieves an improved voltage conversion ratio and excellent efficiency. The addition of a voltage-boosting element, which is an inductor combined in series with a switching device, to the source side of a conventional boost converter is a unique feature of the suggested converter. To confirm the converter's operating features, a thorough theoretical analysis has been carried out, including stability and steady-state evaluations. In addition, a hardware prototype with a 200 V output and 100 W power rating was created in order to test the converter's functionality. With a peak efficiency of 94.3%, the prototype showed good agreement with analytical forecasts. The suggested converter is a viable option for renewable energy applications because of its high voltage gain, small size, and efficiency. This is especially true for solar systems and other distributed energy sources, where low component counts and high step-up ratios are preferred.
ANFIS and PI based performance analysis of three phase three wire distribution system for THD reduction Sreejyothi, Khammampati R.; Jayakumar, J.; Kumar, P. Venkatesh
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp752-760

Abstract

Due to the rising usage of nonlinear loads and power electronic devices in businesses, one of the key power system concerns today is inadequacy of power quality (PQ). This article presents compensation of current harmonics in distribution system in source side by using adaptive neuro fuzzy inferences system (ANFIS) controller. DSTATCOM optimized proportional integral (PI) controller and ANFIS regulator are utilized for DC link voltage regulation. The ANFIS controller showed better performance compared to PI controller during compensating harmonics time. This paper compared two control schemes results PI and ANFIS. Three-phase three-wire inverter is used for DSTATCOM circuit. In the results compared DC capacitor voltage and total harmonic distortion (THD) values of source current. The THD with PI controller is 7.92% while by using ANFIS controller it is reduced to 2.76%. The concert of proposed method is analyzed with MATLAB/Simulink software.
Implementing fuzzy control for a DC-DC boost converter using FPGA Radhika, V.; Srinivasan, Karuppannan; Kiruba, R.
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp656-665

Abstract

This research explores the use of field programmable gate arrays (FPGA) to mitigate static voltage errors and reduce voltage spikes in DC-DC boost converters. Given the dynamic nature of the load impedance in these converters, FPGA is well-suited for designing systems with adaptive behavior. The study implements a fuzzy control algorithm on FPGA in a simulation environment with a small sampling period. The parallel processing capability of FPGA enables the simultaneous execution of fuzzy control algorithms, enhancing the system's responsiveness to rapid changes in load conditions. This approach minimizes voltage overshoot and effectively suppresses voltage spikes. By leveraging FPGA’s high-speed parallelism and flexibility, the research demonstrates significant improvements in the dynamic performance of the DC-DC boost converter. The results highlight FPGA’s potential as a robust platform for controlling power electronic systems, ensuring improved stability and efficiency under varying load conditions.
AI-driven solutions for Li-ion battery performance and prediction Mishra, Sthitprajna; Panigrahi, Chinmoy Kumar; Debdas, Subhra; Bandyopadhyay, Atri; Velpula, Srikanth; Sahoo, Amit Kumar; Tripathy, Pabitra Kumar
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp569-578

Abstract

Batteries serve as crucial power sources for essential portable devices like electric vehicles, smartphones, and laptops. The widespread adoption of Li-ion batteries, while beneficial, has unfortunately led to a surge in adverse incidents. The sudden failure of batteries in both industrial and lightweight applications poses significant economic risks across various industries. Consequently, researchers are intensifying their focus on enhancing battery state estimation, management systems, and predicting remaining useful life (RUL). This paper is structured into three main sections. Firstly, it delves into the acquisition of battery data, encompassing both commercially available and freely accessible Li-ion battery datasets. Secondly, the exploration extends to techniques for estimating battery states through advanced battery management systems. The paper investigates battery RUL estimation, categorizing and evaluating diverse prognostic methods applied to Li-ion batteries based on crucial performance parameters. The review includes scrutiny of commercially and publicly available datasets for various battery models and conditions, considering different battery states and the role of advanced battery management system (BMS). In the final section, the paper concludes with a comparative analysis of Li-ion battery RUL prediction, incorporating exploration into various RUL prediction algorithms, and mathematical models, and introducing an AI-based cloud monitoring system.
Gated dilated causal convolution-based encoder-decoder network for IoT intrusion detection Gopalakrishnan, Aarthi; Surendran, Sharon Priya; Wahab, Aisha Banu
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 3: September 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i3.pp722-732

Abstract

The internet of things (IoT) is perhaps the greatest modern development, as it affects our daily lives and is rapidly expanding in its application zones. The IoT is used in everyday activities, so security is more crucial because intrusion detection will introduce and eliminate attacks. In this paper, a novel deep learning based intrusion detection technique (DEBIT) has been proposed that detects the intrusion using deep learning techniques efficiently. Initially, the data from IoT user is preprocessed and classified using the novel gated dilated casual convolution based encoder-decoder (GDCC-ED) method, which classifies the data into attack and non-attack. The proposed DEBIT framework has been assessed using a MATLAB simulator. The performance of the proposed DEBIT framework has been assessed based on specific parameters, including recall, detection rate, accuracy, F1 score, and precision. Based on experimental results, the suggested method is 99.5% more accurate than pigeon-inspired optimization (PIO), Res-TranBiLSTM, and blockchain-based African buffalo (BbAB), which are 85.4%, 92.5%, and 85%, respectively.