cover
Contact Name
Lyra Yulianti
Contact Email
lyra@sci.unand.ac.id
Phone
-
Journal Mail Official
lyra@si.unand.ac.id
Editorial Address
http://jmua.fmipa.unand.ac.id/index.php/jmua/index
Location
Kota padang,
Sumatera barat
INDONESIA
Jurnal Matematika UNAND
Published by Universitas Andalas
ISSN : 2303291X     EISSN : 27219410     DOI : -
Core Subject : Science, Education,
Fokus dan Lingkup dari Jurnal Matematika FMIPA Unand meliputi topik-topik dalam Matematika sebagai berikut : Analisis dan Geometri Aljabar Matematika Terapan Matematika Kombinatorika Statistika dan Teori Peluang.
Arjuna Subject : -
Articles 15 Documents
Search results for , issue "Vol. 13 No. 4 (2024)" : 15 Documents clear
SUATU KAJIAN TENTANG SOFT SET TERURUT LATTICE (LATTICE ORDERED SOFT SET) Andika, Witri; Nazra, Admi; Helmi, Monika Rianti
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.287-295.2024

Abstract

Teori soft set pertama kali diperkenalkan oleh Molodsov sebagai suatu metode untuk menangani ketidakpastian. Metode ini mengkaji mengenai pengelompokan objek-objek yang memenuhi atau tidak memenuhi suatu parameter tertentu. Namun, dalam teori soft set tidak terdapat urutan dalam himpunan parameternya sehingga dikaji suatu teori yaitu lattice ordered soft set. Dalam tulisan ini akan dibahas konsep dari lattice ordered soft set,operasi-operasi pada lattice ordered soft set, sifat-sifat yang dapat diturunkan dari operasi-operasi tersebut, dan struktur aljabar dari lattice ordered soft set yaitu monoid dan hemiring.    
CHANGEPOINTS DETECTION OF PANDEMIC WAVE IN REAL-TIME: APPLICATIONS TO THE TRANSMISSION OF COVID-19 Zuhairoh, Faihatuz; Ridwan, Muhammad Rais
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.230-243.2024

Abstract

The COVID-19 pandemic has spread throughout the world. Most countries experienced the pandemic in multiple waves. The Richards model predicts when a pandemic will peak and end in a particular area. However, this model can only be used in the single-wave case. The research aims to identify a changepoint detection method capable of delineating pandemic wave boundaries, thus enabling the resolution of multiple wave cases using the Richards model. This article uses two methods to detect changepoints: the Pruned Exact Linear Time (PELT) and the interpolation method. PELT method determines the changepoint based on changes in the statistical properties of the sequence of observations which can be in the form of differences in the mean or variance of each set of observations. In contrast, the linear interpolation method determines the changepoint based on the slope of a data pattern. The two methods complement each other, where the interpolation method is used to determine whether the pandemic is still in a single wave or has multiple waves, followed by determining wave boundaries using the PELT method. Richards model parameter estimation is carried out after the wave boundaries are obtained, and initial data is taken from the last wave using the PELT method. The prediction results show the peak of the pandemic in a particular region and when it will end, which can be used to inform medium-term strategies for the government to overcome the ongoing pandemic. This information helps prevent a resurgence of infections, which would negatively affect the COVID-19 mortality rate and the area's economic situation.
PERBANDINGAN ANALISIS DISKRIMINAN DAN NAIVE BAYES DALAM PENGKLASIFIKASIAN STATUS PENERIMA BANTUAN PROGRAM KELUARGA HARAPAN DI NTB HARSYIAH, LISA; HADIJATI, MUSTIKA; FITRIYANI, NURUL
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.296-308.2024

Abstract

Permasalahan dalam penyaluran bantuan sosial PKH adalah ketidak tepatan penyaluran bantuan PKH. Upaya yang dapat dilakukan untuk mengatasi per masalahan tersebut adalah dengan memastikan kriteria penerimaan bantuan PKH su dah benar dan sesuai dengan kriteria KPM. Berdasarkan kriteria KPM, perlu dilakukan klasifikasi status rumah tangga penerima bantuan PKH dan yang tidak. Hal ini di lakukan dengan tujuan untuk mengetahui apakah bantuan sosial PKH yang disalurkan tepat sasaran atau tidak. Proses klasifikasi dapat dilakukan dengan menggunakan anal isis diskriminan dan metode Na¨ıve Bayes. Hasil penelitian menunjukkan bahwa ketika melakukan klasifikasi menggunakan analisis diskriminan terhadap status penerima ban tuan PKH di NTB diperoleh tingkat kesalahan klasifikasi sebesar 24,5%. Sedangkan hasil klasifikasi menggunakan metode Na¨ıve Bayes memperoleh tingkat kesalahan sebe sar 27,6%. Hasil pengklasifikasian status penerima bantuan PKH dengan menggunakan kedua metode ini tergolong akurat dan analisis diskriminan memiliki kinerja yang lebih baik dibandingkan metode Na¨ ıve Bayes untuk kasus pengklasifikasian status penerima bantuan PKH di NTB
METODE TELESCOPING DECOMPOSITION METHOD PADA PERSAMAAN LOGISTIK WINDARTO-ERIDANI-PURWATI DALAM ORDE FRAKSIONAL Putra, Gusrian; Mardianto, Lutfi; Patra, Nugraha Catur Septian
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.222-229.2024

Abstract

Model logistik Windarto-Eridani-Purwati (WEP) merupakan modifikasi model pertumbuhan logistik dan model monomolekuler yang digunakan untuk menggambarkan pertumbuhan organisme. Penelitian ini bertujuan mengkaji model logistik WEP dalam orde fraksional. Perbandingan dilakukan untuk mengetahui model dengan akurasi yang lebih baik. Metode yang digunakan untuk memperoleh solusi model logistik WEP dalam orde fraksional yaitu Telescoping Decomposition Method (TDM) dan metode Euler. Berdasarkan perhitungan yang telah dilakukan didapatkan model logistik WEP orde fraksional lebih baik dibandingkan model logistik WEP. Hal ini dikarenakan pada model logistik orde fraksional dapat dilakukan suatu pengaturan dalam menetapkan orde fraksionalnya sehingga model logistik WEP orde fraksional lebih fleksibel untuk menghampiri data yang empiris.
THE MIXED UNIVARIATE CONTROL CHART EWMA AND CUSUM FOR FLAVOUR PRODUCTION QUALITY PROCESS MONITORING Sari, Surya Puspita; Maiyastri, Maiyastri; Devianto, Dodi
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.309-315.2024

Abstract

A control chart is an important statistical technique used to monitor the average quality of a process or dispersion. Shewhart control chart is used to detect larger disturbances in process parameters. Along with the times, a more sensitive univariate control chart is created, namely EWMA and CUSUM. The control chart is developed into a combination as a Mixed EWMA-CUSUM control chart to detect smaller changes.  The performance of the Mixed EWMA – CUSUM control graph does not only rely on current observations, but also collects information from previous observations so as to provide a fast signal to detect out of control conditions.
UNRAVELING THE IMPACT OF THE MEMORY, THE COMPETITION, AND THE LINEAR HARVESTING ON A LOTKA-VOLTERRA MODEL PANIGORO, HASAN S.; RAHMI, EMLI; SAVITRI, DIAN; BEAY, LAZARUS KALVEIN
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.257-269.2024

Abstract

The harvesting of population has a dominant influence in balancing the ecosystem. In this manuscript, the impact of harvesting in addition to competition, and memory effect on a prey-predator interaction following the Lotka-Volterra model is studied. The mathematical validation is provided by proofing that all solutions of the model are always exist, non-negative, and bounded. Obeying Matignon condition, Lyapunov function, and generalized LaSalle invariance principle, the local and global stability are investigated. To complete the analytical results, some numerical simulations are given to show the occurrence of forward bifurcation and the impact of the memory index. All results state that three possible circumstances may occur namely the extinction of both populations, the prey-only population, and the co-existence of both populations.
APLIKASI ALGORITMA LEVERRIER FADDEEV DALAM MENGHITUNG INVERS MATRIKS CENTROSYMMETRIC Yanita, Yanita; Indaswari, Marzetha; Alfiany, Noverina
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.324-339.2024

Abstract

Matriks centrosymmetric adalah matriks bentuk khusus dari matriks simetris, yang mana matriks ini memiliki struktur simetri pada pusat matriksnya. Di antara beberapa masalah terkait matriks centrosymmetric adalah masalah penentuan invers dan nilai eigennya. Pada penelitian ini dikaji masalah penentuan invers dan nilai eigen dari matriks centrosymmetric dengan bentuk khusus ordo n × n, n ≥ 3 dengan menggunakan algoritma Leverrier Faddeev. Penelitian ini diawali dengan menentukan Yi dan qi dari setiap matriks centrosymmetric berukuran n × n, 3 ≥ n ≥ 8. Selanjutnya dengan memperhatikan pola invers dan nilai eigennya diperoleh bentuk umum invers dan nilai eigen dari matriks centrosymmetric dengan bentuk khusus ordo n × n, n ≥ 3 dalam dua kasus, yaitu untuk n = 2m + 1 dan n = 2m.
UTILIZING DISCRETE HIDDEN MARKOV MODELS TO ANALYZE TETRAPLOID PLANT BREEDING Hayati, Nahrul; Sulistyono, Eko; Handayani, Vitri Aprilla
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.244-256.2024

Abstract

In plant heredity, the phenotype is the result of observation that can be directly observed, while the genotype is the underlying hidden factor that underlies the expression of the phenotype. The genotype is an important aspect that needs to be understood to explain the pattern of trait inheritance and predict trait inheritance in subsequent generations. The discrete hidden Markov model is a model generated by pair of an unobserved Markov chain and an observation process. This model can be applied to tetraploid plant crosses by modeling genotypes as hidden state and phenotypes as the obeservation process. The probability of dominant phenotype in monohybrid, dihybrid and trihybrid crosses occurring over ten generations during that period is as follows 61,305%, 37,583%, and 23,041%. Furthermore, as more traits are crossed, the probability of dominant phenotype appearing within ten generations decreases. When the dominant phenotype occurs over ten generations, the same genotype can be obtained in monohybrid, dihybrid, and trihybrid crosses, which is heterozygous in the first and second generations, while from the third to the tenth generation it is homozygous dominant.
ANALYSIS FACTORS AFFECTING COVID-19 MORTALITY USING COUNT REGRESSION Qona'ah, Niswatul; Walukusa, T. Martin
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.270-286.2024

Abstract

The ”2019 novel coronavirus” known as “ the 2019-nCoV” or simply“COVID-19” has been declared by the World Health organization (WHO), in first quarter of 2020, as a world pandemic and a public health emergency of international concern. Alas, many details related to the COVID-19 have remained unsolved completely. The success of government strategies in fighting the COVID-19 relays mainly on the results from epidemiological or statistical studies. Statistical models play a major role in providing reliable results based on appropriate analyses. Traditional (one-part) models, mixture models and mixed-effects models for counts are used to investigate effects of the WHO-regions and Cumulated COVID-19 cases on the outcome variable COVID-19 new deaths tolls. Overall result reveals there is a strong association between number of new deaths COVID-19 with predictors including the WHO regions and cumulated cases.Besides, models that account for the overdispersion feature have smallest AICs and have reasonable regression model fits.
ZONAL LABELING OF EDGE COMB PRODUCT OF GRAPHS Soewongsono, Junita Christine; Putra, Ganesha Lapenangga; Ariyanto, Ariyanto; Pangaribuan, Rapmaida Megawaty
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.388-395.2024

Abstract

Given a plane graph $G=(V,E)$. A zonal labeling of graph $G$ is defined as an assignment of the two nonzero elements of the ring $\mathbb{Z}_3$, which are $1$ and $2$, to the vertices of $G$ such that the sum of the labels of the vertices on the border of each region of the graph is $0\in\mathbb{Z}_3$. A graph $G$ that possess such a labeling is termed as zonal graph. This paper will characterize edge comb product graphs that are zonal. The results show that $P_m\trianglerighteq_eC_n$, $C_n\trianglerighteq_e C_r$, $S_p\trianglerighteq_e C_n$, and $S_p\trianglerighteq_e F_t$ are zonal in some cases, but not in others.

Page 1 of 2 | Total Record : 15