cover
Contact Name
Windarto
Contact Email
windarto@fst.unair.ac.id
Phone
+62315936501
Journal Mail Official
conmatha@fst.unair.ac.id
Editorial Address
Study Program of Mathematics, Department of Mathematics, Faculty of Science and Technology, Universitas Airlangga, Indonesia Kampus C UNAIR Jl. Mulyorejo Surabaya, Jawa Timur 60115
Location
Kota surabaya,
Jawa timur
INDONESIA
Contemporary Mathematics and Applications (ConMathA)
Published by Universitas Airlangga
ISSN : -     EISSN : 26865564     DOI : https://doi.org/10.20473/conmatha
Core Subject : Science, Education,
Contemporary Mathematics and Applications welcome research articles in the area of mathematical analysis, algebra, optimization, mathematical modeling and its applications include but are not limited to the following topics: general mathematics, mathematical physics, numerical analysis, combinatorics, optimization and control, operation research, statistical modeling, mathematical finance and computational mathematics.
Articles 71 Documents
Tentang Rumus Induksi Matematika M. Yusuf Syaifuddin; Siti Zahidah, S.Si, M.Si; Eridani
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 1 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i1.43176

Abstract

This paper presents various forms of induction formulas and at the same time proves the equivalence of these formulas by proving that some of these formulas are equivalent to the Well-Ordering Principle which applies to natural number set.
Simulasi Numerik Model Arus Lalu Lintas dengan Pengaruh Kepadatan Kendaraan dan Kondisi Jalan Nashrul Millah
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 1 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i1.44103

Abstract

Traffic jams are common in developing countries. This is generally caused by traffic density, road conditions, and the driver's personality. This phenomenon can be simulated using a mathematical model, allowing it to be seen how these factors affect traffic conditions. The goal of this study is to simulate the effect of traffic density and road conditions using the Lighthill-Whitham-Richard (LWR) model. This model is used to describe macroscopic traffic flow conditions, which are affected by traffic density and speed. The Greenshield model with the influence of road condition parameters added is used for the speed. In numerical solutions, the Upwind method is used to evaluate midpoint values. The simulation results demonstrate the model's ability to describe traffic conditions that are affected by traffic density and road conditions. The level of traffic density is inversely proportional to road conditions and traffic speed.
Desain dan Implementasi Perangkat Lunak Untuk Abstraksi Berhingga Sistem Max-Plus-Linear dengan Tree Tanpa Fungsi Rekursif Muhammadun; Dieky Adzkiya; Imam Mukhlash
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 1 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i1.44274

Abstract

Sistem Max-Plus-Linear (MPL) adalah suatu kelas sistem event diskrit dengan ruang keadaan kontinu mengkarakterisasi sekuensial kejadian diskrit yang mendasari. Di literatur, ada pendekatan untuk analisis yang didasarkan pada abstraksi berhingga model MPL yang autonomous. Prosedur ini telah diimplementasikan dalam MATLAB dengan struktur data list/matriks/vektor. Kekurangan dari implementasi ini, operasi membuat transisinya membutuhkan waktu komputasi yang lama. Kemudian dilakukan perbaikan terhadap implementasi sebelumnya dalam JAVA dengan struktur data tree. Implementasi ini berhasil mempercepat waktu komputasinya tetapi membutuhkan alokasi memori yang lebih besar karena fungsi-fungsinya bersifat rekursif. Penelitian ini membahas implementasi prosedur abstraksi berhingga model MPL autonomous dalam C++ dengan menggunakan struktur data tree tanpa fungsi rekursif. Dari beberapa percobaan yang dilakukan, implementasi pada penelitian ini berhasil mempercepat waktu komputasi VeriSiMPL 2.0 secara signifikan
Mathematical Modeling Of Household Plastic Waste Distribution Management With Transportation Methods Lilla Afiffah; Adinda Nur Ameliyah; A’idah Nur Hanifah; Rudianto Artiono
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 1 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i1.44637

Abstract

Most of the plastic waste is generated by households. Plastic waste is often a problem because there are many and cannot decompose by itself. To solve the problem of plastic waste, plastic waste management will be carried out by channeling plastic waste to the waste bank. Good and correct management of plastic waste distribution is carried out by applying transportation methods starting from modeling the distribution of plastic waste generated from households and solutions from mathematical modeling that is built. From the transportation calculation, the minimum cost of managing the distribution of plastic waste will be obtained so that an efficient plastic waste distribution management system is formed. This study uses the type of experimental research (experimental research) with a literature study. The data used to construct the model are derived from literature studies and simulation data. The results of this study can be developed into a computer program regarding the management of household plastic waste distribution.
Triple-Seasonal ARIMA Untuk Peramalan Data Konsumsi Beban Listrik Nur Azizah; Kartika Nugraheni; Syalam Ali Wira Dinata
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 1 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i1.44740

Abstract

Dalam kehidupan, listrik merupakan salah satu sumber energi yang penting dan utama untuk memenuhi kebutuhan hidup manusia, baik dalam bidang industri, ekonomi maupun teknologi. Seiring dengan meningkatnya kebutuhan listrik dari waktu ke waktu, permasalahan yang dihadapi adalah kuantitas daya yang disalurkan, sehingga penyaluran listrik ke konsumen harus dioptimalkan sesuai dengan kebutuhan. Tujuannya agar dapat mengambil tindakan yang tepat berdasarkan kebutuhan listrik dan meningkatkan kualitas pelayanan kepada konsumen. Oleh karena itu, diperlukan metode peramalan beban listrik yang efektif di masa mendatang untuk mengoptimalkan kebutuhan listrik. Pada penelitian ini dilakukan peramalan dengan metode Triple SARIMA dengan menggunakan data sampel negara Denmark selama 60 menit dalam satuan Mega Watt yang diperoleh dari data sekunder open source (https://data.open-power-system-data.org/time_series/ 2020-10-06). Peramalan ini dilakukan dengan memperhitungkan faktor musiman harian, mingguan, dan tahunan. Tujuan dari penelitian ini adalah untuk mengetahui pola data beban listrik triple-seasonal terhadap pengaruh waktu periodik, mengevaluasi model triple-seasonal terbaik untuk mendapatkan minimum error dan model musiman subset, multiplicative dan additive. Hasil yang diperoleh dalam penelitian ini diperoleh 3 model sementara, kemudian dilakukan uji estimasi dan uji signifikansi dengan uji asumsi Maximum likelihood dan residual.
Survival Analysis and Hazard of Log Logistic Distribution on Type I Censored Data Parametrically Ardi Kurniawan; Ruth Hosana; Ni Wayan Widya Septia Sari
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 2 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i2.47040

Abstract

Survival Analysis is a research method that examines the survival time of individuals or experimental units in relation to events such as death, disease, recovery, or other experiences. This study utilizes a parametric survival analysis model with a 2 parameter log logistic distribution and Maximum Likelihood Estimation (MLE) method to analyze the survival of students during their study period. The log logistic distribution is chosen due to its ability to capture early or late failure patterns. The objective of this research is to analyze type I censored survival data using the log logistic distribution applied to secondary data on student study duration. The dataset consists of 98 observations. The calculated values for the β and γ parameters of the 2 parameters log logistic distribution are 2.12831 and 0.0918891, respectively. The probability of students completing their studies by semester 8 (hazard function h(8)) is 0.370102, while the probability of students continuing their studies in semester 9 (survival function s(9)) is 0.320817.
Resolving Independent Dominating Set pada Graf Bunga, Graf Gear, dan Graf Bunga Matahari Rafiantika Megahniah Prihandini; Nabilah Ayu Az-Zahra; Dafik; Antonius Cahya Prihandoko; Robiatul Adawiyah
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 2 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i2.47046

Abstract

Resolving independent dominating set is the development of metric dimension and independent dominating set. Resolving independent dominating sets is a concept which discusses about determining the minimum vertex on a graph provided that the vertex that becomes the dominating set can dominate the surrounding vertex and there are no two adjacent vertices dominator and also meet the requirement of metric dimension where each vertex in graph G must have a different representation which respect to the resolving independent dominating set . In this study, we examined the resolving independent dominating set of flower graphs, gear graphs, and sunflower graphs.
Model Petri Net Produksi Tahu Pada Industri Skala Rumah Tangga Deny Murdianto; Shinta Tri Kismanti; Dwi Santoso
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 2 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i2.47291

Abstract

The process of making tofu includes several steps, namely the process of soaking soybeans, washing soybeans, milling soybeans, boiling or cooking, filtering, settling and adding vinegar. The purpose of this study it was to obtain a Petri Net model of the tofu making process and perform simulations with signed Petri Nets. Simulations are carried out to determine the dynamics that occur during the process of making tofu. The data used is by observation in a household-scale tofu and tempeh processing industry in Tarakan City. The Petri Net model obtained consists of six transitions and ten places. Assuming that every enable transition will always be fired in every state, there are sixteen possible states that can be achieved in the Petri Net simulation.
Pewarnaan Titik Ketakteraturan Lokal pada Hasil Operasi Amalgamasi Titik Graf Lintasan Rafelita Faradila Sandi; Arika Indah Kristiana; Lioni Anka Monalisa; Slamin; Robiatul Adawiyah
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 2 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i2.47904

Abstract

Definition of graph is set pair (????(????),????(????)) where ????(????) is vertex set and ????(????) is edge set. A maping ???? : ????(????)→{1,2, … ,????} as label function and weight function ???? : ????(????)→???? is desined as ????(????)=Σ????∈????(????)????(????). The function ???? is called local irregularity vertex coloring if: (i) ????????????(????)=???????????? (???????????????? (????????) ;???????? ???????? ???????????????????? ????????????????????????????????) and (ii) for every ???????? ∈ ????(????),????(????) ≠ ????(????). The chromatic number of local irregularity vertex coloring denoted by ????????????????(????) is defined as ????????????????(????)=????????????{|????(????(????))|;???? ???????? ???????????????????? ???????????????????????????????????????????????? ???????????????????????? ????????????????????????????????}. The method used in this paper is pattern recognition and axiomatic deductive method. In this paper, we learn local irregularity vertex coloring of vertex amalgamation of path graph and determine the chromatic number on local irregularity vertex coloring of vertex amalgamation of path graph. This paper use vertex amalgamation of path graph (????????????????(???????? ,????,????)). The result of this study are expected to be used as basic studies and science development as well as applications related to local irregularity vertex coloring of vertex amalgamation of path graph.
Analisis Kestabilan dan Kontrol Optimal Model Matematika Penyebaran Leptospirosis dengan Saturated Incidence Rate Miswanto; Nisrina Firsta Ammara; Windarto
Contemporary Mathematics and Applications (ConMathA) Vol. 5 No. 2 (2023)
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/conmatha.v5i2.49379

Abstract

Leptospirosis is a disease caused by the bacteria Leptospira inchterohemorrhagiaea. Leptospirosis can attack humans and other animals, through rodents, especially rats. This research aims to analyze the stability of the equilibrium point in the mathematical model of the spread of Leptospirosis and apply optimal control variables in the form of prevention and treatment efforts. Based on the results of the mathematical model analysis of the spread of Leptospirosis, two equilibrium points were obtained, there are the non-endemic equilibrium point and the endemic equilibrium point. Local stability and the existence of an equilibrium point depend on the basic reproduction number ????0. The non-endemic equilibrium point is local asymptotically stable if ????0 < 1, while the endemic equilibrium point tends to be asymptotically stable if ????0 > 1. Next, the problem of control variables in the model is determined using Pontryagin's Maximum Principle. Numerical simulation results show that providing control in the form of prevention efforts and treatment efforts simultaneously provides effective results in minimizing the population of individuals exposed to and infected by Leptospirosis at the cost of providing optimal control.