cover
Contact Name
Mesran
Contact Email
mesran.skom.mkom@gmail.com
Phone
+6282161108110
Journal Mail Official
jurnal.json@gmail.com
Editorial Address
STMIK Budi Darma Jln. Sisingamangaraja No. 338 Telp 061-7875998
Location
Kota medan,
Sumatera utara
INDONESIA
Jurnal Sistem Komputer dan Informatika (JSON)
ISSN : -     EISSN : 2685998X     DOI : https://dx.doi.org/10.30865/json.v1i3.2092
The Jurnal Sistem Komputer dan Informatika (JSON) is a journal to managed of STMIK Budi Darma, for aims to serve as a medium of information and exchange of scientific articles between practitioners and observers of science in computer. Focus and Scope Jurnal Sistem Komputer dan Informatika (JSON) journal: Embedded System Microcontroller Artificial Neural Networks Decision Support System Computer System Informatics Computer Science Artificial Intelligence Expert System Information System, Management Informatics Data Mining Cryptography Model and Simulation Computer Network Computation Image Processing etc (related to informatics and computer science)
Articles 457 Documents
Sistem Pemilihan Supplier Obat Menerapkan Metode Additive Ratio Analysis (ARAS) Al Khadzik, Fahmi; Huda, Baenil; Novalia, Elfina; Hilabi, Shofa Shofiah
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 5 No. 3 (2024): Maret 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i3.7499

Abstract

Qita Sehat pharmacy provides a wide range of medicines that are supplied by more than 30 suppliers and 100 buyers every month, but not all suppliers can meet the criteria set by pharmacies and suppliers are often late in the process of supplying drugs to pharmacies so that the stock in pharmacies is running low. From these problems, a solution is made, namely a drug supplier selection system is made by determining the priority order of drug suppliers with several criteria that match the availability of drugs at Qita Sehat pharmacies. The method used is the method of ARAS (Additive Ratio Analysis). The criteria considered are price, quality, lead time, communication systems, performance history and repair services. The result of this method is the order of priority of drug suppliers and knowing the results of the questionnaire through the sensitivity test that is the influence of changes in the value of the importance of the criteria. From the data generated in research using the ARAS method, the results obtained are that PT Javas Karya is the best supplier with the first rank of alternative A6 with a total value of 0.120.
Sentiment Classification of Food Influencer Content Reviews using Support Vector Machine Model through CRISP-DM Framework Singgalen, Yerik Afrianto
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 5 No. 3 (2024): Maret 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i3.7509

Abstract

The research problem revolves around the challenges in effectively marketing culinary tourism aligned with tourist preferences in Indonesia, necessitating a substantial exploration of consumer sentiments related to culinary diversity through the lens of food influencer content. Food influencers are crucial in stimulating tourists' interest in gastronomy through culinary tourism in Indonesia. This research reveals challenges in culinary tourism marketing aligned with tourist preferences, necessitating substantial exploration of consumer sentiments related to culinary diversity through food influencer content. The sentiment classification method employed is the Cross-Industry Standard Process for Data Mining (CRISP-DM) using the Support Vector Machine (SVM) algorithm and the SMOTE operator. The data source is derived from a video with the ID PMhfLy_buV8, containing 114,422 comments. This study collects and processes 30,000 comments, resulting in 9,323 data points. The findings highlight the vital performance metrics of SVM models, both with and without SMOTE, showcasing high accuracy, precision, recall, and F-measure values. Specifically, SVM without SMOTE achieves 95.28% accuracy, while SVM with SMOTE achieves 98.67%. Despite some limitations in discerning positive and negative sentiments, indicated by moderate Area Under the Curve (AUC) values (0.608 to 0.658), the overall efficacy of SVM in sentiment analysis for food influencer content is apparent. Drawing from a dataset of 30,000 comments, these insights contribute to advancing sentiment analysis methodologies and offer practical implications for understanding consumer perceptions and behaviors in digital media and influencer marketing. Additionally, the prominence of frequent words such as "bang" (1322), "nonton" (1064), "makan" (921), "yang" (801), "puasa" (711), "tahun" (484), "ngiler" (448), "lagi" (384), "tanboy" (311), and "enak" (315), as extracted from RapidMiner analysis, underscores the significance of language patterns in the realm of food influencer content.
Rancang Bangun Alat Informasi Penjemputan Siswa Berbasis Mikrokontroller ESP32 Maulana, Irfan; Bachtiar, Moh. Muaz; Fadlun, Wira; Sakti, Fredi Prima
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 5 No. 3 (2024): Maret 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i3.7510

Abstract

In daily life, the phenomenon of traffic density increases significantly during school hours. There are many ways to overcome this phenomenon, one of which is making a student pickup information tool based on the ESP32 microcontroller. The tool created is in the form of a student pick-up information display, which will display the student's name and class when the parent has correctly entered the code via the web application. Student pickup information tools use hardware and software. The hardware consists of an ESP32 microcontroller as a manager for input data and output data which is the link between the web server and the P10 LED display and the P10 DMD panel to display the name and class data of the students being picked up. Meanwhile, the software uses Arduino IDE software and MySQL database. The results of testing from a series of research shows efficiency and activeness in picking up students with a success percentage of 100% with testing 15 times.
Klasifikasi Kanker Payudara Menggunakan Metode Convolutional Neural Network (CNN) dengan Arsitektur VGG-16 Idawati, Idawati; Rini, Dian Palupi; Primanita, Anggina; Saputra, Tommy
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 5 No. 3 (2024): Maret 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i3.7553

Abstract

Breast cancer classification is a process to determine the type and characteristics of breast cancer based on the characteristics of cancer cells. In this research, a system is designed to classify breast cancer using ultrasound images which are then processed using the Convolutional Neural Network method with the VGG-16 architecture. The aim of the research is to develop a breast cancer classification system using Convolutional Neural Network (CNN) and evaluate the classification results using Convolutional Neural Network (CNN) with the VGG-16 architecture. In breast cancer classification, three classes are considered: normal, benign, and malignant. The steps in the classification process include image input, filtering, resizing, data augmentation, and data digitization. The best results were obtained in this test using the SGD optimizer hyperparameter, learning rate 0.001, epoch 20 and batch size 32 producing an accuracy value of 78.87%, a precision value of 75.69%, an AUC value of 79.85% and an f1 score value of 74.67%.
Toxicity Analysis and Sentiment Classification of Wonderland Indonesia by Alffy Rev using Support Vector Machine Singgalen, Yerik Afrianto
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 5 No. 3 (2024): Maret 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i3.7563

Abstract

The music industry's increasing reliance on digital platforms like YouTube for dissemination raises concerns about the potential impact of music videos on viewer sentiment and well-being. This study seeks to assess the toxicity and sentiment of the Wonderland Indonesia music video by Alffy Rev through Support Vector Machine analysis, contributing to our understanding of the effects of music content on online audiences. This research addresses the challenge of sentiment classification in digital content by leveraging the Cross-Industry Standard Process for Data Mining (CRISP-DM) framework. The study aims to enhance sentiment classification accuracy by applying a Support Vector Machine (SVM) with a Synthetic Minority Over-sampling Technique (SMOTE) to address class imbalance issues. The research problem revolves around the need for robust sentiment analysis models capable of accurately discerning sentiment polarity within diverse datasets. Through the systematic application of CRISP-DM phases - business understanding, data understanding, data preparation, modeling, evaluation, and deployment - the study examines the efficacy of SVM with SMOTE in sentiment classification tasks. The findings demonstrate notable performance metrics, including accuracy (96.50%), precision (95.75%), recall (99.00%), and F-measure (97.34%). The AUC value substantially increases from 0.642 without SMOTE to 0.997 with SMOTE, highlighting its effectiveness in improving sentiment classification accuracy. In addition, The comparative analysis of toxicity values between the first and second videos demonstrates distinct patterns: the first video showcases a Toxicity score of 0.05290, with notable metrics such as Profanity registering at 0.04815. Conversely, the second video exhibits a slightly lower Toxicity score of 0.04744, with varying metrics such as Severe Toxicity at 0.01386.
Implementation of Global Vectors for Word Representation (GloVe) Model and Social Network Analysis through Wonderland Indonesia Content Reviews Singgalen, Yerik Afrianto
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 5 No. 3 (2024): Maret 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i3.7569

Abstract

Integrating the Global Vectors for Word Representation (GloVe) Model with Social Network Analysis presents a promising approach for extracting nuanced semantic relationships from Wonderland Indonesia's content reviews. However, the lack of comprehensive studies exploring the effectiveness of this integration, specifically within the context of Wonderland Indonesia's content reviews, necessitates focused research to uncover its potential impact and applications. This study investigates the reception and impact of the "Wonderland Indonesia" video content by Alffy Rev ft. Novia Bachmid (Chapter 1) within the YouTube community using a comprehensive methodology based on CRoss-Industry Standard Process for Data Mining (CRISP-DM), topic analysis, and Social Network Analysis (SNA). Through topic analysis, the content's main themes and narrative elements were identified, shedding light on its storytelling effectiveness. Furthermore, sentiment analysis using Vader was conducted on 2204 out of 24185 posts, revealing that 1369 (92%) exhibited positive sentiment, 427 (31.19%) had neutral sentiment, and 850 (62.09%) contained negative sentiment. Additionally, sentiment analysis using TextBlob was performed on the same subset of posts, with 1369 (40) posts exhibiting positive sentiment, 599 (43.75%) with neutral sentiment, and 730 (53.32%) expressing negative sentiment. Notably, metrics such as toxicity (highest value: 0.90780) and severe toxicity (highest value: 0.95021) exhibited varying prominence within the analyzed content. These findings enable targeted interventions and content moderation strategies to promote healthier online discourse. The SNA uncovered intricate social dynamics and interaction patterns among viewers, emphasizing the video's ability to foster engagement and community interaction. This study underscores the significance of creative storytelling and community engagement strategies in digital content creation, with implications for audience participation and community development within the digital sphere. Future research could explore the longitudinal effects of such content strategies on audience retention and community engagement.
Pengembangan Program Alternatif untuk Proses Konsolidasi Multiple Database Menggunakan Pandas dan MongoDB Forgaritenzo, Joshe; Wibowo, Argo; Wijana, Katon
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 7 No. 1 (2025): September 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v7i1.8320

Abstract

E-Commerce merupakan salah satu bidang bisnis yang sangat besar di Indonesia yang menghasilkan transaksi daring yang besar jumlahnya, sehingga ribuan hingga ratusan ribu data harus dikelola setiap harinya oleh pihak perusahaan melalui proses konsolidasi. Konsolidasi merupakan sebuah proses penggabungan data antar dua database. Perusahaan yang diteliti untuk mengelola proses konsolidasi menggunakan program pihak ketiga bernama Pentaho, namun program ini sering mengalami maintenance sehingga mengganggu proses bisnis yang berjalan. Penelitian ini dilakukan untuk membuat sebuah program alternatif yang dapat digunakan ketika Pentaho mengalami kendala. Program yang dikembangkan memanfaatkan proses loading yang merupakan metode dalam dunia pengelolaan database, dimana data yang dimiliki kemudian dimasukkan ke dalam database tujuan. Pengembangan program ini akan memanfaatkan library python pandas dan database relational serta NoSQL untuk melakukan proses loading dan proses konsolidasi. Penelitian ini akan mencoba menganalisis dan membuat program berjalan dengan lebih efisien dan memberikan pengembangan agar proses loading dan konsolidasi secara keseluruhan dapat menjadi lebih baik. Rata-rata proses loading program hasil pengembangan yang menggunakan database relational menunjukkan peningkatan sekitar 8% atau 20 - 30 detik lebih cepat untuk data berjumlah sekitar 500.000. Pengembangan proses loading menggunakan database NoSQL menunjukkan adanya peningkatan sekitar 6,5 - 9,6% untuk jumlah data yang berkisar dari 20 – 500.000 data. Proses ini juga menunjukkan peningkatan sekitar 17.5% dari program yang digunakan perusahaan sebelumnya untuk proses 500.00 data.
Segmentasi Nasabah Bank Pada Data Campuran Menggunakan K-Means Clustering W, Joceline Schellenberg; Budiman, Mohammad Andri; Amalia, Amalia
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 6 No. 3 (2025): Maret 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v6i3.8532

Abstract

In order to increase the extension of the use of Local Government Banks’s services, customer segmentation is crucial for banks to develop marketing strategies tailored to specific customer groups. While the RFM model is commonly used, enhancing service usage expansion requires data on customer transaction preferences, which are typically categorical in nature. Therefore, this study segments bank customers based on their transaction history, utilizing not only numerical data but also categorical data representing transaction preferences using K-Means Clustering. The clustering model effectively groups customers into four clusters with distinct characteristics
Implementation of DBSCAN Algorithm for Grouping Poverty Levels in Central Java Province Fahmi, Amiq; Tsani, Maulida Aristia
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 6 No. 4 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v6i4.8553

Abstract

Poverty is a complex problem that hampers socio-economic development in Indonesia, especially in Central Java Province, which encounters significant challenges, with a poverty rate reaching 10.77% in 2023. This study aims to identify spatial patterns of poverty in 35 districts/cities in Central Java Province by grouping areas based on the number of poor individuals reported by the Central Java Province Statistics Agency (BPS) in 2023. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm groups districts/cities based on poverty data density with optimized parameters to produce statistically significant clusters. The results of the analysis reveal four clusters, specifically cluster 0 (moderate poverty), cluster 1 (high poverty), cluster 2 (very high poverty), and cluster 3 (low poverty). Model validation was executed using the Silhouette Score (0.447) and Davies-Bouldin Index (0.441), which showed the validity of the clustering. This study is anticipated to provide strategic implications for the Central Java Provincial Government in formulating more effective poverty alleviation policies, such as resource allocation adjusted to each cluster's characteristics. In addition, this study enables future exploration of additional socio-economic factors influencing poverty, such as the Human Development Index, education, health, infrastructure, resource accessibility, and comparative analysis of clustering algorithms for enhanced accuracy.
Deteksi Dark patterns Biaya Layanan E-commerce Berdasarkan Perspektif Konsumen Menggunakan Algoritma Support Vector Machine Salmalina, Divana Taricha; Umam, Khothibul; Handayani, Maya Rini
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 6 No. 4 (2025): Juni 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v6i4.8563

Abstract

Perkembangan industri e-commerce di Indonesia belakangan ini dibayangkan pada fenomena meningkatnya keluhan konsumen terkait kebijakan biaya layanan yang dinilai kurang transparan, termasuk indikasi adanya praktik pola gelap . Penelitian ini bertujuan mengkaji persepsi konsumen terhadap isu tersebut melalui pendekatan analisis sentimen berbasis machine learning dan deteksi pola manipulatif. Data penelitian diperoleh dari ulasan pengguna di platform media sosial X yang kemudian diproses melalui serangkaian tahapan text mining meliputi pembersihan data, tokenisasi, stopword removal , dan stemming . Analisis sentimen menggunakan algoritma Support Vector Machine (SVM) menunjukkan hasil yang signifikan, dimana 55-78% ulasan di platform ketiga e-commerce (Shopee, Tokopedia, Lazada) tergolong negatif. Analisis TF-IDF mengidentifikasi kata kunci seperti "biaya", "layan" (layanan), dan "mahal" sebagai istilah paling dominan dalam ulasan negatif. Model SVM menunjukkan kinerja yang cukup baik dengan akurasi mencapai 87% dalam mengklasifikasikan sentimen negatif. Lebih lanjut, analisis tematik terhadap ulasan negatif berhasil mengidentifikasi indikasi pola gelap , khususnya dalam kategori biaya tersembunyi (biaya tersembunyi) dan menyelinap ke keranjang (penambahan produk tanpa disadari) yang muncul secara konsisten di semua platform. Temuan ini tidak hanya menegaskan adanya pola manipulatif yang berulang dalam industri e-commerce Indonesia, tetapi juga menegaskan urgensi bagi para pelaku industri untuk meningkatkan transparansi dalam kebijakan biaya. Secara praktis, hasil penelitian ini dapat menjadi bahan pertimbangan penting bagi regulator dalam merumuskan kebijakan perlindungan konsumen di era digital yang lebih komprehensif.