cover
Contact Name
Ali Awaludin
Contact Email
ali.awaludin@ugm.ac.id
Phone
+6287852654297
Journal Mail Official
jcef.ft@ugm.ac.id
Editorial Address
Jl. Grafika No.2 Kampus UGM, Yogyakarta 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of the Civil Engineering Forum
ISSN : 25811037     EISSN : 25495925     DOI : https://doi.org/10.22146/jcef
Core Subject : Engineering,
JCEF focuses on advancing the development of sustainable infrastructure and disseminating conceptual ideas and implementing countermeasures, particularly in the tropics, which are vulnerable to disasters. Specifically, we look to publish articles with the potential to make real-world contributions to improving both local communities and countries readiness for and responsiveness to natural and human-made disasters. The particular emphasis of JCEF is given to the civil & environmental engineering researches associated with natural disasters such as geo-disaster (earthquake, landslide, and volcanic eruption), water-related disaster (flood, debris flow, coastal disaster, and tsunami), and human-made disasters such as soil, water, and air pollution and water scarcity. Articles describing the topics of disaster risk reduction techniques, disaster early warning system, climate change adaptation, vulnerability analysis and trends, pre and/or post-disaster reconstruction and rehabilitation planning and management, forensic engineering, the socio-engineering approach for the countermeasures, or water reuse and recycle are particularly encouraged.
Articles 130 Documents
Structural Health Assessment of Kretek II Bridge using Enhanced Frequency Domain Decomposition Astalis Ulul Absor, Didib; Aminullah, Akhmad; Supriyadi, Bambang
Journal of the Civil Engineering Forum Vol. 10 No. 2 (May 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.9151

Abstract

The development of infrastructure is growing rapidly in Indonesia. Kretek II bridge is one of the infrastructures built in the country. Dynamics aspects are one of the very important aspects used to validate structural analysis model or being linked to Structural Health Monitoring (SHM) of the bridge. Dynamics properties such as natural frequency, damping ratio, and mode shape also referred as modal parameters. The objective of this research is to determine the modal parameters of Kretek II bridge using Enhanced Frequency Domain Decomposition (EFDD) which is commonly used to extract modal parameters from the acceleration data recorded. Compared to the conventional method, EFDD is very practical and robust in structural health assessment because of its user-friendly uses in the ARTeMIS Modal software. To make sure that the results from EFDD are accurate, numerical modeling is necessary to validate it. This research was conducted using dynamics load test results as data for the modal extraction with EFDD method assisted by ARTeMIS Modal software. Dynamics load test was performed by placing 8 accelerometers in the span and exciting it with impact load from dropped truck on ramp. Modal parameters from the EFDD results are then compared to the numerical modeling results. The first two modes of the EFDD and numerical modeling results consecutively are 3.09 Hz, 3.745 Hz and 3.06 Hz, 3.49 Hz. The EFDD and numerical modeling results are both in agreement with both results having similar mode shape on their first two mode and low error percentage with only 0.89% and 7.17% respectively.
Analysis of Chloride Contaminant Transport in Tailings Storage Facility Dam (Case Study: Gold Mine in Sumatra) Pascayulinda, Devina; Widjaja, Budijanto; Wijaya, Martin
Journal of the Civil Engineering Forum Vol. 10 No. 2 (May 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.9520

Abstract

In the practice of gold mining industry, hazardous waste known as tailings is produced during the ore extraction process. These tailings are typically stored in a dam structure called a Tailings Storage Facility (TSF). The planning and construction of a TSF are critical considerations, as the failure of a TSF can have substantial environmental impacts, pose risks to human safety, and result in industrial losses. Therefore, strict control is necessary in the development of TSFs to minimize the potential negative consequences. This research focuses on the transport of contaminants within a TSF, specifically examining the concentration of chloride contaminants and conducting particle movement analysis. The study utilizes modeling through the GeoStudio SEEP/W program to simulate groundwater flow profiles and the GeoStudio CTRAN/W program to understand contaminant movement over a 100-year period. GeoStudio modeling employs 10 materials: impermeable clay soil, filter sandy soil, transition gravel rock, three mine waste types (Fine, Rockfill, and Rockfill with fine), hard rock bedrock layer, in-situ soil representing the original layer, landslide with colluvial soil, and the tailings itself. Back analysis is employed to iterate model parameters and ensure modeling accuracy against field data, including comparisons with water quality test results and readings from vibrating wire piezometer (VWP) instrumentation. The contaminant transport is influenced by advection-dispersion processes and tends to concentrate within the TSF boundary toward the dam toe over a 100-year timeframe. The analysis emphasizes the influence of advection in contaminant transport and underscores the importance of particle position relative to the groundwater level, with Particle Tracking Analysis shows significant movement within the groundwater flow area. This research provides crucial insights into the dynamics of contaminant concentration, informing better decision-making in TSF planning and management. The findings underscore the imperative of strict control measures to minimize environmental impacts and human safety risks associated with TSFs, thereby advancing knowledge in gold mining waste management.
Excess Pore Pressure Migration Analysis Due to High Embankment Construction – Case Study East Kalimantan Lie, Edwin; Rahardjo, Paulus Pramono; Wijaya, Martin
Journal of the Civil Engineering Forum Vol. 10 No. 2 (May 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.9713

Abstract

A 42-inch pipeline traverses a predominantly flat right-of-way (ROW), running from south to north in East Kalimantan. Adjacent to the ROW, a coal mine concession was located on the western side, while the Mahakam River lies a further 3 km to the east. A mining waste dump has been constructed since 2010, situated in an area underlain by soft alluvium soil (Qa). The waste was stacked, reaching heights of up to 75 meters, with its toe approximately 200 m from the edge of the ROW. In 2016, a failure occurred in the ROW, causing the 42-inch pipeline to shift a maximum of 6.8 m horizontally, and rise by 2.0 m within a 300 m span. A geotechnical investigation was then conducted, consisting of 7 CPTu with dissipation testing. The CPTu results indicated high pore pressure, with a layer of soft clay ranging from 15 to 32 m thickness found in the ROW area. A hypothesis was formulated suggesting that the soft clay was not fully consolidated. Hence, the failure of the pipeline was possibly caused by the migration of excess pore water pressure accumulated during the construction of the waste dump. Results of the investigation indicated that the permeability coefficient was 2.5 times greater in the horizontal direction compared to the vertical ones (kh/kv = 2.5), allowing the pore water pressure to migrate more easily in the horizontal direction. This study aims to elucidate how the migration of excess pore water pressure in the horizontal direction influences ground stability. The analysis was conducted using finite element software MIDAS GTS NX, with the kh/kv varying from 2.5 to 100 times to explore excess pore pressure movement behaviors. The results of this study confirm that excess pore pressure migration can occur horizontally if the horizontal permeability coefficient is larger than its vertical counterpart. Thus, this study highlights that the greater the permeability coefficient and the larger the ratio, the further the excess pore pressure travels. Moreover, the horizontal displacement increases with the permeability coefficient ratio.
Inconsistent using FLOOD and Flooding Development of EPA SWMM for Assessing Flood Occurrences in Vulnerable Urban Watershed Considering Extreme Rainfall Events Samia Alam; Md. Asifur Rahman
Journal of the Civil Engineering Forum Vol. 10 No. 1 (January 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.9763

Abstract

Urban flood, commonly known as urban water congestion, is a type of water hazard that poses significant challenges for urban residents and water management experts. Chittagong, an essential economic hub in Bangladesh, renowned for its role as a port city, comprises a diverse range of land use, including residential, industrial, and commercial sectors. The Chaktai canal, an important element of Chittagong drainage system, is connected to the Karnaphuli river, playing a vital role in managing drainage by handling a substantial portion of the city water. Therefore, this research evaluated the operational efficiency of a specific drainage network under the influence of altered rainfall events using the Storm Water Management Model (SWMM). Using ArcGIS 10.4, the land use pattern of the area was researched, incorporating data from field surveys and secondary sources. SWMM 5.1 integrated watershed data, and further simulation was carried out to estimate runoff in various sub-catchments and drainage network limitations during heavy rain. During the intense monsoon period, the tool determined the average runoff depth, considering backwater effects and robust tidal surges, resulting in a depth of 3.3m compared to 2.6m in the dry season. This research evaluated the influence of impervious land use changes on urban drainage systems. While meteorological factors alone render drainage network sufficient in dry periods, the outfall shows vulnerability during the rainy season, with an allowance of only 0.7m, jeopardizing the catchment through flood. It contributed a schematic sub-catchment representation, emphasizing that flood events depend on volume runoff and peak flow in urban drainage system. SWMM model was used to illustrate the catchment surface runoff and interconnected node depths via conduits, as well as the current catchment scenario comprehensively.
Analysis of Gongseng Dam Break-Induced Flood in East Java, Indonesia Through 2D Iber Software Ahmadi, Sa’iyd Husayn; Triatmodjo, Bambang; Benazir
Journal of the Civil Engineering Forum Vol. 10 No. 1 (January 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.9929

Abstract

The dam is a crucial river-crossing structure that ensures a sustainable water supply and offers numerous benefits. However, the potential hazard of dam failure is an imminent threat that could materialize unexpectedly. To comprehend the potential impact of dam break flood and identify vulnerable areas, it is essential to conduct rigorous analysis and simulate various dam failure scenarios. This comprehensive assessment is invaluable for informed land use planning and the development of effective emergency response plans. Therefore, this study aimed to analyze flood inundation resulting from the hypothetical failure of Gongseng dam, using Iber model. The modeling approach relied on a two-dimensional finite volume shallow water model, guided by specialized software. The scenarios for Gongseng dam break showed inundation areas of 12.57 km² and 7.55 km² for overtopping and piping failure, respectively. Overtopping failure resulted in the highest discharge, with Von Thun method causing severe damage due to wide break dimensions, and eventually leading to catastrophic consequences. However, this study showed that Froehlich method provided the most rational prediction for break parameters. In contrast to the other methods focusing solely on water height behind dam, Froehlich equation considered both the volume and height at the time of failure. Implementing dam break analysis held the potential to benefit downstream communities by providing inundation maps, thereby aiding in the mitigation of flood risks. Particularly, in situations with limited data and resources, as shown in this study, the cost-effective modeling method proposed could be an attractive option for simulating extreme flood induced by dam break.
Analysis of Extreme Rainfall in the Mt. Merapi Area Anita Yuliana; Joko Sujono; Karlina
Journal of the Civil Engineering Forum Vol. 10 No. 1 (January 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.10084

Abstract

The slopes of Mount Merapi (Mt. Merapi) are an area prone to hydrological disasters due to elevation and orography. Hydrological disasters that have the potential to occur include floods, erosion, landslides, and drought which are closely related to extreme rainfall. Spatial and temporal variability of rainfall in mountainous areas requires rainfall data that can represent rainfall events. Therefore, this research aims to obtain the reliability of satellite rainfall data in the extreme rainfall indices. The CHIRPS, GPM-IMERG FINAL (IMERG-F) and GPM-IMERG LATE (IMERG-L) will be used in the reliability analysis of satellite-based rainfall compared to observed rainfall station. To validate satellite rain data, statistical criteria are utilized with parameters such as Correlation Coefficient (R), Root Mean Squared Error (RMSE), and Relative Bias (RB). Satellite-based rainfall estimates have a weak to moderate correlation (0.19 – 0.55), the RMSE value is relatively good (12.18 – 31.35 mm) and the observed bias tends to underestimate the estimated values. The capabilities of the IMERG-F, IMERG-L and CHIRPS satellites as alternative rainfall data in the Mt. Merapi area are quite good where IMERG-L has the best performance in capturing rainfall above 50 mm (R50mm), Consecutive Dry Days (CDD) indices, max 1–day and 5-day precipitation (Rx1day and Rx5day). The potential for extreme rainfall that is most prone to trigger lava floods occurs in the western region of Mt. Merapi at Ngandong Station (Sta. Ngandong). In this region, there is a high occurrence of extreme rainfall events. For instance, there were 501 instances of R50mm with an intensity of 77 mm day-1, Total Precipitation (PRCPTOT) reaches 3385 mm, Rx5day reaches 393 mm, and Consecutive Wet Days (CWD) lasts for 30 days. The results of this analysis can assist in climate understanding and modeling of extreme rainfall relevant to the region and support water resource management and disaster risk mitigation.
Seismic Vulnerability Assessment of Regular and Vertically Irregular Residential Buildings in Nepal Paudel, Satish; Maulana, Taufiq Ilham; Prayuda, Hakas
Journal of the Civil Engineering Forum Vol. 10 No. 2 (May 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.10316

Abstract

The need to assess the vulnerability of non-engineered residential RCC buildings in Nepal has become urgent, especially considering the ongoing modifications and additions to these structures without understanding their susceptibility to seismic events. Many residential buildings, particularly those up to three stories, did not fully comply to the guidelines outlined in Nepal Building Code NBC 105:2020. Therefore, there is a necessity to assess the seismic performance of these structures. This study aims to quantify the seismic vulnerability of such buildings by focusing on three distinct types: regular two and three-story structures, and irregular three-story structures. Using finite element modeling, the analysis of the buildings’ seismic capacity was performed through pushover analysis. Subsequently, linear time history analysis is conducted to determine the seismic demand. Two software were utilized to conduct the analyses, namely SAP2000 and STERA_3D. The study also includes the matching eleven strong ground motion inputs to Nepal’s site characteristics and response spectrum to ensure the relevance of the local context. Furthermore, fragility curves are constructed to compare the probability of structural failure, by first conducting the nonlinear dynamic analyses on the building specimens. The result showed that the probability of complete failure rises rapidly when an additional story is constructed with vertical irregularity, increasing from 1.8% to 5.7% in a non-engineered two-story building. The study also observes variations in top displacement across all three buildings due to differences in earthquake duration and frequency. From the findings, it is revealed that a significant increase in seismic vulnerability for vertically irregular buildings compared to regular ones
The Impact of Fiber Density and Layering in NFRP on Confined Concrete Compressive Strength Amalia, Zahra; Saidi, Taufiq; Hasan, Muttaqin; Al-Bakri, Nazira Suha; Fu, Li
Journal of the Civil Engineering Forum Vol. 10 No. 2 (May 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.10408

Abstract

Strengthening columns holds a crucial role in structural engineering and is frequently called for due to a range of factors, including heightened load requirements, structural degradation, design flaws, or the need for seismic retrofitting. Natural Fiber-Reinforced Polymers (NFRP) in concrete reinforcement has gained significant attention in recent years as a sustainable and eco-friendly alternative to strengthened reinforced concrete. NFRP jacketing presents an adaptable option, as it delivers an improved load-carrying capability as a confining effect. This paper explores the fundamental reasons behind the need for column strengthening and the advantages of employing NFRP jacketing as a preferred method. The study examined the influence of varying fiber densities and the number of fiber layers in NFRP on the mechanical properties of concrete, with a specific focus on its confined concrete compressive strength. The test specimen was a cylinder with a diameter of 150mm and a height of 300mm. NFRP, made from abaca fiber and resin, was attached around the specimen’s circumference to provide a confinement effect. Axial load was applied to the test specimen. The findings indicated that introducing abaca fiber as an NFRP material increased confined concrete compressive strength by up to 37% compared to unconfined concrete. Moreover, the application of three layers of NFRP fibers results in a 15% rise in confined concrete stress, especially when higher-density fiber types are utilized. Study findings suggest that natural fiber density and the number of layers play a role in enhancing concrete strength, however, their influence may not be significantly pronounced.
An Assessment of Derelict Building Constructions Situated In Coastal Regions Rahman, Mohammad Junaedy; Hasrul, Muhammad Reza; Ashad, Hanafi; Yusuf, Furqan Ali; Hasrul, Nur Refera
Journal of the Civil Engineering Forum Vol. 10 No. 3 (September 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.10433

Abstract

Reinforced concrete structures constructed in coastal areas in Indonesia often suffer damage before reaching their intended service life, with steel reinforcement corrosion being a major contributing factor. This study aims to investigate the use of concrete structures produced with simple methods and inadequate supervision in coastal regions. Reinforced concrete structures near the coast are susceptible to carbonation due to marine environmental factors, leading to reinforcement corrosion. The study was conducted on the Dande Dandere Market building, Tanakeke Island, Takalar Regency, South Sulawesi. The research method employed quantitative techniques, including surveys and structural testing. Visual inspections were conducted to identify the types of damage present in the building and estimate their causes. Structural testing involved both destructive and non-destructive tests. Concrete compressive strength testing was also conducted to assess the concrete sample’s compressive strength, along with carbonation testing to determine the acidity level of concrete due to the intrusion of salt compounds or carbonation formed within the concrete mass. The research findings indicate structural degradation in the market’s construction, occurring more rapidly than the intended lifespan of the building. Signs of structural degradation in the reinforced concrete construction include spalling of concrete cover on beams, supporting columns, and cantileverslabs, as well as degraded reinforcement, with an average reduction in steel weight of 62.70% over six years, and an average weight loss of 0.103 grams per day. Therefore, efforts are needed to optimize the structural quality of the building through comprehensive repairs, starting from the foundation. However, for cost-efficient alternatives, it is recommended to use timber structural materials for new market construction. The use of timber in coastal buildings, which are vulnerable to marine influences, is more feasible as the presence of saltwater can inhibit wood decay caused by microorganisms.
Effect of the Specimen’s Height on the Split-Tensile Strength of the Fibers Reinforced Clay-Lime-Rice Husk Ask Mixture Hartono, Edi; Muntohar, Agus Setyo; Diana, Willis; Hemeto, Abd. Dzargifar
Journal of the Civil Engineering Forum Vol. 10 No. 2 (May 2024)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.11305

Abstract

Various studies on the effect of specimen size on splitting tensile strength. However, geotechnical codes lack consensus regarding the recommended specimen diameter and height-to-diameter (H/D) ratio for the split tensile strength test. Hence, it is imperative to study the effect of the height-to-diameter ratio of the specimen on the outcomes of the split tensile strength test, especially for stabilized and fiber-reinforced soil. This research examines the effect of adding lime-rice husk ash and plastic fiber and the effect of specimen size on splitting tensile strength. The height of the specimen is varied, using a height-to-diameter ratio (H/D), namely 0.5, 1.0, 1.5, 2.0, and 2.5, in which the diameter is 70 mm. Two groups of specimens were prepared as stabilized clay without fibers and stabilized clay with 0.1% fibers. The lime required for stabilization is 10% of the dry weight of the soil. In this research, the lime and rice husk ash ratio was designed as 1:1. The splitting tensile strength test was carried out after the specimen was cured for seven days. The investigation indicates that the splitting tensile strength of the specimen without fibers reduces from 217 kPa to 150 kPa as the H/D ratio grows from 0.5 to 2.5. Conversely, the tensile strength of the specimen with fibers increases from 284 kPa to 357 kPa. The findings suggest that the fiber inclusion enhances the splitting tensile strength of the stabilized clay. The specimen size affects the splitting tensile strength, but the effect becomes less noticeable when the H/D ratio exceeds 2.5. From a fracture mechanism perspective, the specimen experiences mode II (shearing) due toa probable “flexural action” along its height. It remains challenging to conclude the dimensions of the test specimen or, at the very least, estimate the correction factor for the size-to-tensile strength ratio.

Page 8 of 13 | Total Record : 130