cover
Contact Name
Defri Ahmad
Contact Email
defri_math@fmipa.unp.ac.id
Phone
+6281374333545
Journal Mail Official
defri_math@fmipa.unp.ac.id
Editorial Address
Jl. Prof. dr. Hamka Air Tawar Barat Padang
Location
Kota padang,
Sumatera barat
INDONESIA
Journal of Mathematics UNP
Core Subject : Science, Education,
Journal of Mathematics UNP is a journal to publish article from student researches in UNP Mathematics study program, and we also kindly accept other article from outside of our study program related to Mathematics: consists of publication in Algebra, Analysis, Combinatoric, Geometry, Differential Equations, Graph and/or Mixed Mathematics Applications: consists of publication in Application of Differential Equations, Mathematics Modelling, Mathematics Physics, Mathematics Biology, Financial Mathematics, Application of Graph and Combinatorics, Optimal Control, Operation Research, and/ or Mixed Statistics: consists of publication on Development and/ or Application of statistics in various aspects.
Articles 404 Documents
Analisis Pengendalian Biaya Persediaan Bahan Baku dengan Metode Material Requirement Planning (MRP) pada Toko Tommy Alumunium Fadhilah, Muhammad; Winanda, Rara Sandhy
Journal of Mathematics UNP Vol 9, No 4 (2024): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v9i4.16852

Abstract

Getting maximum profit is the main goal of every company. To achieve this goal, it is important for companies to control raw material inventory. Tommy Alumunium Store is a furniture industry company that produces various kinds of furniture products, one of which is cabinets. The existence of an uncertain amount of demand can result in the company experiencing excess or shortage of inventory from the amount of demand. So that research will be conducted to control raw material inventory and determine the total inventory costs that must be incurred by the company using the Material Requirement Planning method. The lot sizing used is the Lot for Lot technique, Economic Order Quantity and Period Order Quantity. This research is applied research. This study found that the most effective technique to apply is Lot for Lot, because it results in the minimum cost. With this Lot for Lot technique, the company can save inventory costs of Rp. 7,644,339 or 51.46% of the total inventory costs owned by Tommy Alumunium Store.
Faktor-Faktor Yang Mempengaruhi Produksi Salak Mangguang Menggunakan Analisis Regresi Linear Berganda Wahyuni, Putri; Winanda, Rara Sandhy
Journal of Mathematics UNP Vol 9, No 3 (2024): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v9i3.16676

Abstract

The center of snake fruit mangguang recency is in Kenagarian Tanjung Beringin. Mangguang salak production fluctuates every year. From 2019-2022, snake fruit production has decreased, which has an impact on the economy of the people in the area. The aim of this research is to identify factors that have a significant influence on the production of Mangguang salak in Pasaman Regency. The analysis used is multiple linear regression analysis. From the research results, the factors that most significantly influence the production of mangguang salak are the number of clumps and pruning with an error rate of 5%.
PENYELESAIAN PERSAMAAN NON LINEAR MENGGUNAKAN METODE ITERASI TIGA LANGKAH Huang, Nafisha Hurinia; Rizal, Yusmet
Journal of Mathematics UNP Vol 10, No 1 (2025): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v10i1.17052

Abstract

The Three-Step Iterative Method is a multistep approach designed to determine the roots of complex non-linear equations. Developed using Taylor Series, Quadratic Equations, and Hermite Interpolation, this method provides an alternative for solving complicated equations numerically and analytically. This study aims to examine the formulation of the method, design an algorithm in a flowchart, and analyze its convergence order. The research adopts a literature review methodology by conducting an in-depth analysis of relevant references. The algorithm's implementation is tested through computer programming to evaluate its numerical effectiveness. The results demonstrate that the method achieves high-order convergence, enabling faster solutions with minimal error. In conclusion, the Three-Step Iterative Method is an efficient and accurate solution for resolving complex non-linear equations.
Peramalan Produksi Buah Manggis Provinsi Sumatera Barat dengan Menggunakan Metode Pemulusan Eksponensial Tripel Tipe Brown Juflanda, Mesya
Journal of Mathematics UNP Vol 10, No 2 (2025): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v10i2.17221

Abstract

Buah manggis termasuk ke dalam buah tropis yang menjadi salah satu komoditas ekspor Indonesia yang memiliki banyak manfaat. Sumatera Barat merupakan salah satu provinsi dengan jumlah produksi buah manggis 10 terbesar di Indonesia. Penelitian ini bertujuan untuk membentuk model dan meramalkan produksi buah manggis provinsi Sumatera Barat tahun 2024-2028 dengan menggunakan metode pemulusan Eksponensial tripel tipe Brown. Metode ini merupakan sebuah teknik peramalan kuantitatif yang memanfaatkan satu parameter, yaitu  dalam perhitungannya.  Hasil analisis dan pengolahan data mendapatkan hasil ramalan jumlah produksi untuk tahun 2024-2028 secara bertuturut-turut yaitu 65.684,92198 ton, 70.900,28032 ton, 76.291,07833 ton, 81.857,31599 ton, dan 87.598,99331 ton.  
OPTIMASI PENJADWALAN KARYAWAN PADA SALON KECANTIKAN MUSLIMAH BEAUTY CARE MENGGUNAKAN METODE HUNGARIA MODIFIKASI Fazila, Atika; Winanda, Rara Sandhy
Journal of Mathematics UNP Vol 9, No 4 (2024): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v9i4.16732

Abstract

Salon Kecantikan Muslimah Beauty Care memiliki 21 karyawan dengan 6 jenis pekerjaan. Pengelola sering menghadapi kesulitan dalam membagi tugas secara optimal, terutama saat permintaan pelanggan meningkat, yang menyebabkan pekerjaan tidak sesuai dengan keahlian karyawan. Penelitian ini bertujuan mengoptimalkan penjadwalan karyawan menggunakan metode Hungaria modifikasi, yang dipilih untuk mengatasi ketidakseimbangan alokasi tugas. Masalah penjadwalan dirumuskan ke dalam model matematika. Hasil menunjukkan rata-rata kinerja karyawan meningkat dari 77,19 sebelum penerapan metode menjadi 88,19 setelah metode diterapkan. Hasil yang diperoleh menunjukkan alokasi karyawan yang optimal sesuai prioritas pekerjaan. Face treatment diberikan kepada Isna, Betty, Puti, dan Yana, sementara Body treatment ditugaskan kepada Buk Yun, Aisyah, dan Dila. Refleksi/therapy & massage dipercayakan kepada Meme, Inong, Netti, dan Tini, sedangkan Hand & foot treatment kepada Vivin, Rani, Yus, dan Thia. Totok aura kesehatan ditangani oleh Eva, Niar, dan Lisa, sementara Creambath dikerjakan oleh Melly, Tari, dan Atik.
Penentuan Akar Persamaan Non Linier Menggunakan Metode Iterasi Tanpa Menghitung Turunan yang Lebih Tinggi Olpelda, Danisa Alzura; Subhan, Muhammad
Journal of Mathematics UNP Vol 9, No 3 (2024): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v9i3.16230

Abstract

The iteration method without calculating higher derivatives is one of the numerical methods which is included in the group of open methods. This iteration method is derived based on the third truncated Thiele’s continuous fraction. To avoid calculating higher derivatives, an approximation of the second and third derivatives is used in determining the roots. This research aims to determine the roots of non-linear equations using the iteration method without calculating higher derivatives. This type of research is basic research. Based on the discussion results, it was found that the iteration method without calculating higher derivatives uses two-step in determining the root. The convergence analysis shows that the iteration method without calculating higher derivatives has a convergence order of four. The algorithm of the iteration method without calculating higher derivatives is shown in the form of a flowchart.Keywords: Non-linear equation, Thiele’s continued fraction, Viscovatov algorithm, iterative method, order of convergence
Implementasi Fuzzy Time Series Logika Singh Untuk peramalan Nilai Ekspor Nilam di Indonesia Putri, Rahmadita Amalia; Subhan, Muhammad
Journal of Mathematics UNP Vol 10, No 1 (2025): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v10i1.17047

Abstract

Patchouli is used as one of the mixtures of cosmetic products, food industry, paint making, aromatherapy, and various other industrial needs and is needed by various types of industries in various countries. Due to the high world demand for patchouli, a prediction is made to anticipate uncertainty so that an estimate is obtained that is close to the actual situation. The method that can be used is the Singh logic fuzzy time series method. This research is an applied research, where the data taken is the data on the value of patchouli exports in Indonesia in the period January 2020 to July 2024. The results of forecasting the value of patchouli export data in Indonesia with this method are then measured for accuracy using MAPE. From the Singh logic fuzzy time series forecasting method, the MAPE obtained was 7,215%. Based on the MAPE, forecasting export value in Indonesia with Singh's fuzzy time series logic has a very good level of accuracy. For the following period, the export value of patchouli is projected to be US$ 29,638,657.15 for August 2024, US$ 28.212.795,11 for September 2024, and US$ 28.277.533,23 for October 2024. The Predicted value is categorized qith a very high export value of patchouli.
Suatu Telaah terhadap Metode Ferrari untuk Menentukan Akar dari Persamaan Kuartik Amelia, Mona
Journal of Mathematics UNP Vol 10, No 2 (2025): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v10i2.17369

Abstract

A polynomial equation with the highest power of four is called a quartic equation, which has the general form. A common problem with equations is finding the roots, that is the values of that satisfy the equation. This research aims to determine the roots of quartic equations analytically using the Ferrari method. The steps involved are reviewing the method, analyzing the graph and characteristics, determining the roots of the quartic equation, and forming a formula with the characteristics of the roots of the quartic equation. The results show that the reduced quartic equation is the fundamental form for solving equations using the Ferrari method. The roots of the reduced quartic equation are decomposed into five cases and the characteristics of the roots of the quartic equation are obtained based on the values.
PENENTUAN AKAR PERSAMAAN POLINOMIAL KUARTIK DENGAN PENDEKATAN PERLUASAN METODE CARDANO Susanti, Yepsi; Subhan, Muhammad
Journal of Mathematics UNP Vol 9, No 4 (2024): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v9i4.16888

Abstract

Persamaan Polinomial kuartik adalah persamaan polinomial yang memiliki pangkat tertinggi yaitu empat. Salah satu permasalahan persamaan polinomial kuartik adalah mencari solusi akar dari persamaan polinomial kuartik. Tujuan dari penelitian ini adalah membentuk formula dan menyusun langkah-langkah dari Perluasan Metode Cardano. Metode yang digunakan dalam penelitian ini adalah studi literatur. Berdasarkan hasil penelitian diperoleh bahwa bentuk formula Perluasan Metode Cardano memiliki rumus kuadrat yang menghasilkan empat nilai kemudian disubstitusikan ke rumus akar sehingga menghasilkan empat akar persamaan polinomial kuartik yaitu yang memiliki akar rill dan kembar pada diskriminan sama dengan nol, akar rill dan berlainan pada diskriminan besar dari nol, serta akar kompleks pada diskriminan kecil dari nol. Selanjutnya diperoleh langkah-langkah dari Perluasan Metode Cardano yaitu tentukan nilai k,l,m,n, tentukan nilai p,q,r,z,D, dalam z besar dari nol dan kecil sama dengan empat berdasarkan persamaan kubik resolven, dan masukkan nilai z dalam formula Perluasan Metode Cardano yang didapat.
Optimasi Keuntungan Industri Bolu Malin Kundang dengan Metode Algoritma Titik Interior Putri, Utari Mutia
Journal of Mathematics UNP Vol 9, No 3 (2024): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v9i3.16681

Abstract

Bolu Malin Kundang merupakan salah satu oleh-oleh khas dari Kota Padang. Industri ini masih mengalami kendala dalam produksi optimal. Penelitian ini bertujuan untuk mengetahui hasil optimasi keuntungan pada Bolu Malin Kundang dengan menggunakan metode algoritma titik interior. Berdasarkan hasil penelitian dengan menggunakan algoritma titik interior diperoleh keuntungan pada Bolu Malin Kundang sebesar Rp 112.831.757,4 dengan memproduksi bolu kukus blackforest sebanyak 550 box, bolu kukus cokelat sebanyak 1.600 box, bolu kukus oreo sebanyak 636 box, bolu kukus pandan sebanyak 1.500 box, bolu kukus talas sebanyak 400 box, bolu kukus sanjai sebanyak 500 box, bolu kukus pisang sebanyak 300 box, brownies panggang kombi sebanyak 4.200 box, brownies panggang keju sebanyak 1.788 box, balok lumer sebanyak 1.084 box. Sedangkan keuntungan rata-rata yang diperoleh Bolu Malin Kundang sebesar Rp 85.293.763,66. Maka terdapat selisih antara keuntungan yang diperoleh Bolu Malin Kundang dan keuntungan dengan menggunakan metode algoritma titik interior adalah sebesar Rp 27.537.993,74.