Claim Missing Document
Check
Articles

Found 29 Documents
Search

ANALISIS MODEL MATEMATIKA PADA KANKER SERVIKS DENGAN PENGELAKAN SISTEM IMUN DAN TERAPI SiRNA Winanda, Rara Sandhy; Purwadi, Joko
AdMathEdu : Mathematics Education, Mathematics, and Applied Mathematics Journal Vol 8, No 2: Desember 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (438.165 KB) | DOI: 10.12928/admathedu.v8i2.12348

Abstract

Pada penelitian ini dibahas tentang dinamika interaksi antara sistem imun dan sel kanker serviks. Model matematika yang terbentuk berupa sistem persamaan biasa non linear yang menjelaskan hubungan interaksi antara sel kanker serviks, sistem imun, senyawa sitokin IL-2, dan senyawa TGF-.  Pertumbuhan sel kanker serviks dipicu oleh senyawa TGF- dan dihambat oleh pemberian terapi siRNA. Terapi ini bekerja mengurangi jumlah sel kanker serviks dengan menghambat sintesis mRNA yang menambah jumlah sel kanker serviks. Tujuan penulisan paper ini adalah menganalisis dua hal tentang kestabilan titik ekuilibrium bebas kanker dan eksistensi titik ekuilibrium infeksi HPV. Berdasarkan analisis model matematika terhadap lima titik ekuilibirium, yaitu terdiri dari tiga titik ekuilibirum bebas kanker dan dua titik ekuilibrium infeksi HPV, dua titik ekuilibrium bebas kanker bersifat tak stabil dan satu titik ekuilibrium stabil asimtotik dengan syarat tertentu, dan dua titik ekuilibrium infeksi HPV masing-masingnya memuat akar dari polinomial pangkat empat dan pangkat enam. Eksistensi titik ekuilibrium infeksi HPV ditentukan untuk menjamin bahwa kasus ini dapat mempunyai interpretasi biologis.  
ANALISIS MODEL MATEMATIKA PADA KANKER SERVIKS DENGAN PENGELAKAN SISTEM IMUN DAN TERAPI SiRNA Rara Sandhy Winanda; Joko Purwadi
AdMathEdu : Jurnal Ilmiah Pendidikan Matematika, Ilmu Matematika dan Matematika Terapan Vol 8, No 2: Desember 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (438.165 KB) | DOI: 10.12928/admathedu.v8i2.12348

Abstract

Pada penelitian ini dibahas tentang dinamika interaksi antara sistem imun dan sel kanker serviks. Model matematika yang terbentuk berupa sistem persamaan biasa non linear yang menjelaskan hubungan interaksi antara sel kanker serviks, sistem imun, senyawa sitokin IL-2, dan senyawa TGF-.  Pertumbuhan sel kanker serviks dipicu oleh senyawa TGF- dan dihambat oleh pemberian terapi siRNA. Terapi ini bekerja mengurangi jumlah sel kanker serviks dengan menghambat sintesis mRNA yang menambah jumlah sel kanker serviks. Tujuan penulisan paper ini adalah menganalisis dua hal tentang kestabilan titik ekuilibrium bebas kanker dan eksistensi titik ekuilibrium infeksi HPV. Berdasarkan analisis model matematika terhadap lima titik ekuilibirium, yaitu terdiri dari tiga titik ekuilibirum bebas kanker dan dua titik ekuilibrium infeksi HPV, dua titik ekuilibrium bebas kanker bersifat tak stabil dan satu titik ekuilibrium stabil asimtotik dengan syarat tertentu, dan dua titik ekuilibrium infeksi HPV masing-masingnya memuat akar dari polinomial pangkat empat dan pangkat enam. Eksistensi titik ekuilibrium infeksi HPV ditentukan untuk menjamin bahwa kasus ini dapat mempunyai interpretasi biologis.  
Model Matematika Interaksi Sel Kanker dan Sel Imun dengan Efek Kemoterapi Rara Sandhy Winanda; Melia Catur Anggraini
Jurnal Sains Matematika dan Statistika Vol 6, No 1 (2020): JSMS Januari 2020
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/jsms.v6i1.9258

Abstract

Penelitian ini membahas tentang interaksi antara sel kanker dengan sel imun yang terdiri atas CTL dan sel T Helper, pada kasus kemoterapi. Model matematika dianalisis untuk memperoleh kestabilan lokal di sekitar titik ekuilibrium dengan menggunakan Matriks Jacobian. Analisis dilakukan pada kasus interaksi antara sel imun dan sel kanker dengan kemoterapi dan tanpa pemberian efek kemoterapi. Pada kasus tanpa kemoterapi diperoleh lima titik ekuilibrium yaitu tiga itik ekuilibrium bebas infeksi yang tidak stabil, satu titik ekuilibrium infeksi stabil dengan syarat tertentu, dan satu titik ekuilibrium infeksi yang stabil asimtotik. Sedangkan pada kasus kemoterapi diperoleh hasil yang lebih baik bagi penderita kanker yaitu terdapat enam titik ekuilibrium dimana dua titik ekulibrium bebas infeksi stabil asimtotik dengan syarat tertentu, satu titik ekulibirum bebas infeksi tidak stabil, dua titik ekulibrium infeksi stabil asimtotik dengan syarat tertentu dan satu titik ekulibrium infeksi stabil asimtotik.
University Students' Procrastination: A Mathematical Model (Case Studies: Student in Mathematics Department Universitas Negeri Padang) Rara Sandhy Winanda; Akira Mikail; Defri Ahmad; Dina Agustina; Rahmawati Rahmawati
EKSAKTA: Berkala Ilmiah Bidang MIPA Vol. 23 No. 02 (2022): Eksakta : Berkala Ilmiah Bidang MIPA (E-ISSN : 2549-7464)
Publisher : Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Negeri Padang, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (756.19 KB) | DOI: 10.24036/eksakta/vol23-iss02/315

Abstract

Mathematical modeling of procrastination was carried out on students in the Mathematics Department at Universitas Negeri Padang. Procrastination is the tendency to delay work and can be contagious among students. Mathematical modeling of procrastination aims to show the spread of procrastination among students. The SEIR compartment model was applied in this study. From a total of 1,154 population members, 93 samples were randomly selected and were given a questionnaire to estimate the parameter values in the model. A couple of steady states appear in the model. The free disease steady state has a biological meaning since all the variables are real, while the endemic steady state is surreal in biological terms. The number of its basic reproduction number, from which the parameter values are derived from the primary data, indicates stability analysis near the free disease steady states. The result shows that procrastination is spread among students in the population, with the number of Ro is 1,009.
Comparison of Portfolio Mean-Variance Method with the Mean-Variance-Skewness-Kurtosis Method in Indonesia Stocks Dina Agustina; Devni Prima Sari; Rara Sandhy Winanda; Muhammad Rashif Hilmi; Dina Fakhriyana
EKSAKTA: Berkala Ilmiah Bidang MIPA Vol. 23 No. 02 (2022): Eksakta : Berkala Ilmiah Bidang MIPA (E-ISSN : 2549-7464)
Publisher : Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Negeri Padang, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (788.102 KB) | DOI: 10.24036/eksakta/vol23-iss02/316

Abstract

In this paper, we compare the optimal portfolio weight of mean-variance (MV) method with mean-variance-skewness-kurtosis (MVSK) method. MV is a method to get weight on a portfolio. This method can be developed into the method of MVSK with attention to the higher-order moment of return distribution; skewness and kurtosis. In determining the weight of portfolio is also important to consider the skewness and kurtosis of return distribution. This method of considering the aspect of skewness and kurtosis is called the MVSK method with the aim of maximizing the level of return and skewness and minimizing the risks and exceeding of kurtosis. The result indicate that the optimal portfolio return of all methods is MVSK method with minimize variance priority.
Mathematical Model of Effect of Yellow Virus on Tomato Plants Through Bemisia tabaci Insects Using Verticillium lecanii Fungus Nada Atifah; Dewi Murni; Rara Sandhy Winanda
Rangkiang Mathematics Journal Vol. 1 No. 2 (2022): Rangkiang Mathematics Journal
Publisher : Department of Mathematics, Universitas Negeri Padang (UNP)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (580.361 KB) | DOI: 10.24036/rmj.v1i2.14

Abstract

The Yellow virus is a virus that causes tomato plants to die. The insect vector Bemisia tabaci spreads this virus. The goal of this study is to identify the shape of a mathematical model of the influence of yellow virus on tomato plants via the insect Bemisia tabaci and the fungus Verticilliun lecanii, as well as to interpret the results of the mathematical model analysis. This is referred to as basic research. This study employs a descriptive method in which theories are analysed in relation to the topics to be discussed, and these theories are based on a literature review. Stability analysis is carried out using Routh-Hurwitz criteria. It indicates that the disease-free equilibrium point is asymptotically stable when Λt=μtN and the endemic equilibrium point is asymptotically stable for d1>e1, d2>e2 and a1>(a1)2+(a3)2a0)/(a3a2 ). The model simulation shows that if the efficacy of Verticillium lecanii is high, the population of infected tomato plants, as well as the population of Bemisia tabaci, will go extinct.
TPACK-Enhanced Geometry and Algebra for Primary School Teacher of KKG Cluster IV in X Koto Singkarak District, Solok Regency Rara Sandhy Winanda
Pelita Eksakta Vol 6 No 1 (2023): Pelita Eksakta Vol. 6 No. 1
Publisher : Fakultas MIPA Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/pelitaeksakta/vol6-iss1/199

Abstract

In elementary school, a mastery of geometric and algebraic mathematical methods is necessary. Students in the discipline of algebra struggle with fraction addition and multiplication. Similarly, students struggle in geometry to compute the area of a flat plane. Group IV Koto Sani teachers in the Koto Singkarak District of the Solok Regency received this assistance in the form of workshops. From August to October 2022, there will be three meetings both in-person and online. The offered material is comprised of TPACK-based learning resources, such as Cuisenaire rods, flat media, and music boards. Based on the results of the initial and final surveys, it was determined that there was a 7% improvement in material comprehension, a 7% improvement in the ability to create media, and a 5% improvement in the ability to use media
Penerapan Algoritma Titik Interior dalam Optimasi Keuntungan pada Toko Churro.io Alivia Tasya Kemala; Rara Sandhy Winanda
Journal of Mathematics UNP Vol 8, No 2 (2023): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v8i2.14468

Abstract

Linear Programming is a part of optimization. One of the methods that can be used to solve linear programming problems is the interior point algorithm method. This research is an applied research was aimed to apply the interior point algorithm to solved production optimization problems at Churro.io. The data collection method used in this research was an interview by researcher with Churro.io’s owner. Based on the results of the research using the calculation of the interior point algorithm, a maximum profit of Rp 1.216.400 was obtained by producing 60 units of dark chocolate royal churro, 37 units of white chocolate royal churro, 33 units of matcha royal churro, 21 units of tiramisu royal churro, 21 units of salted caramel royal churro, and 14 units of cheese royal churro. The profit was obtained by Churro.io’s calculation of Rp 890.500, so there is a difference between the calculation of the interior point algorithm and the calculation at the Churro.io of Rp 325.900.
OPTIMASI PERENCANAAN PRODUKSI KERAJINAN ROTAN DI ANGGA FURNITURE MENGGUNAKAN LINEAR PROGRAMMING Tiara Vania; Rara Sandhy Winanda
Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika Vol. 5 No. 1 (2024): Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistik
Publisher : LPPM Universitas Bina Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46306/lb.v5i1.560

Abstract

Production planning is an activity to obtain products in accordance with the needs of two parties, namely companies and consumers. Production planning is important in the industry in order to achieve optimal profits. In the rattan handicraft business, furniture faces problems in production planning. The production process is carried out based on the availability of raw materials and the estimated average demand, but it is often difficult to determine the optimal amount and time of production. This results in a shortage or excess of stock which has an impact on profits. By using a linear program, this study aims to determine the optimal results in production planning in the rattan and furniture handicraft business using the simplex method so that optimal profits are obtained. The results showed that the number of products produced was optimal so that the profit obtained was 8.49%.
Optimasi Rute Terpendek Jalur Distribusi Pupuk Menggunakan Algoritma Artificial Bee Colony (Studi Kasus: PT Bungo Dani Mandiri Utama Liusman, rio; Winanda, Rara Sandhy
Journal of Mathematics UNP Vol 8, No 4 (2023): Journal Of Mathematics UNP
Publisher : UNIVERSITAS NEGERI PADANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/unpjomath.v8i4.14973

Abstract

Product distribution involves planning and storing information related to product storage until the product is delivered. PT Bungo Dani Mandiri Utama is a fertilizer distributor that must visit ten retailers in its product distribution. This research aims to test whether the route currently used by PT Bungo Dani Mandiri Utama is optimal or needs improvement. This research is an applied study that uses the Artificial Bee Colony algorithm to solve the fertilizer distribution problem modeled as a Traveling Salesman Problem. From the analysis, the optimal route is obtained, starting from the warehouse, passing Lubuk Beringin, Limbur, Kerakap Island, Rantau Ikil, Mangun Jayo, Tanjung Menanti, Sungai Binjai, SPA Unit 1 Market, Tirta Mulya, Senamat, and back to the warehouse, with a total distance of 330 km. This optimal route is 48 km shorter than the usual route used by PT Bungo Dani Mandiri Utama which covers 378 km.