cover
Contact Name
Andi Firdaus Sudarma
Contact Email
andi.firdaus@mercubuana.ac.id
Phone
+6221-5840815
Journal Mail Official
ijimeam@mercubuana.ac.id
Editorial Address
Universitas Mercu Buana Program Studi S2 Teknik Mesin Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Location
Kota adm. jakarta barat,
Dki jakarta
INDONESIA
International Journal of Innovation in Mechanical Engineering and Advanced Materials
ISSN : 2477541X     EISSN : 24775428     DOI : https://dx.doi.org/10.22441/ijimeam
The journal publishes research manuscripts dealing with problems of modern technology (power and process engineering, structural and machine design, production engineering mechanism and materials, etc.). It considers activities such as design, construction, operation, environmental protection, etc. in the field of mechanical engineering and other related branches. In addition, the journal also publishes papers in advanced materials related with advanced electronic materials, advanced energy materials, advanced engineering materials, advanced functional materials, advanced materials interfaces, and advanced optical materials.
Articles 6 Documents
Search results for , issue "Vol 6, No 1 (2024)" : 6 Documents clear
Sustainable Biodiesel Production from Waste Cooking Oil and Crude Palm Oil Using a Custom Mini Pilot Plant Siang, Alan Ooi Lim; Leman, Abdul Mutalib; Feriyanto, Dafit; Abdulmalik, Samir Sani; Zakaria, Supaat
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 1 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i1.23734

Abstract

The widespread practice of reusing Waste Cooking Oil (WCO) in hawker food stalls, often for multiple frying cycles, presents a significant public health concern due to the degradation of the oil, which can lead to the formation of toxic compounds. These practices not only pose health risks, such as increasing the potential for cardiovascular diseases and cancer, but also contribute to environmental pollution when the oil is improperly disposed of. This study seeks to address these issues by converting WCO, along with crude palm oil (CPO), into biodiesel using a custom-designed mini pilot plant. The biodiesel production process involved a two-step reaction. The first step, esterification, was conducted using a 55:100 alcohol-to-oil volume ratio with 1% by volume sulfuric acid (H₂SO₄) as the acid catalyst, at 60°C, with a reaction time of 30 minutes and a stirring speed of 800 rpm. The second step, transesterification, utilized a 6:1 alcohol-to-oil molar ratio, with 1 wt.% sodium hydroxide (NaOH) as the alkaline catalyst, carried out at 70°C over the course of one hour. These conditions were carefully selected to optimize the conversion efficiency and to minimize the free fatty acid content, which is crucial for achieving a high yield of biodiesel. The results demonstrated that the mini pilot plant is highly effective in producing biodiesel from both WCO and CPO. The study also led to the development of a standard operating procedure (SOP) for the biodiesel production process, ensuring reproducibility and efficiency.
Effect of Pouring Temperature Variation on Cooling Rate, Hardness and Microstructure of Al-Zn in Aircraft Structures Pambekti, Arif; Prakoso, Agung; Dinaryanto, Okto; Rahmandhika, Andinusa; Yaqin, Rizqi Ilmal
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 1 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i1.23945

Abstract

Al-Zn alloys are widely utilized in industries such as automotive, aircraft manufacturing, and advanced military equipment due to their exceptional strength-to-weight ratio. Among various fabrication methods, metal casting is a commonly used technique for producing structural components from these alloys. However, a significant challenge with metal casting is the reduction in mechanical properties compared to the base material before melting. This reduction highlights the need for research to identify the optimal casting conditions, particularly the casting temperature, which plays a crucial role in maintaining and potentially enhancing the material's mechanical properties. Aluminum alloy 7075, known for its high strength, was selected for investigation. According to the Al-Zn phase diagram, the melting point of aluminum alloy 7075, based on the weight percentage specified by the Standard Aluminum Association, is approximately 660°C. Experiments were conducted by varying the pouring temperature during casting in 30°C increments above this melting point. Specifically, the alloy was melted and cast at three different temperatures: 690°C, 720°C, and 750°C. The mold temperature was consistently maintained at 220°C to isolate the effects of the pouring temperature. Results indicate that increasing the casting temperature significantly affects the alloy's microstructure and mechanical properties. As the casting temperature increases, the cooling rate decreases, leading to a finer grain structure. This finer grain size directly contributes to an increase in hardness, suggesting that higher casting temperatures can enhance the mechanical properties of Al-Zn alloys. These findings emphasize the importance of precise control over casting temperatures to optimize the performance characteristics of aluminum alloy 7075 in high-strength applications.
Comparative Analysis of Cooling Load Calculations: CLTD Method vs. Carrier HAP 5.01 Software for Hotel HVAC Design Prawibowo, Madarif; Komarudin, Komarudin
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 1 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i1.23781

Abstract

This study examines the cooling load requirements of a hotel building by comparing two methodologies: the traditional Cooling Load Temperature Difference (CLTD) method and the Carrier Hourly Analysis Program (HAP) 5.01 software. The primary objective is to validate the accuracy and reliability of these methods in calculating cooling loads across different room types, from standard rooms to larger, more complex suites. The results show that the CLTD method consistently yields higher cooling load estimates, with discrepancies ranging from 3% to 14% compared to HAP 5.01 calculations. These differences are most significant in larger rooms, such as suites and owner’s suites, which have more extensive glass areas, higher occupancy, and more heat-generating equipment. The findings indicate that while the CLTD method is valuable for quick, preliminary estimates, the HAP 5.01 software provides a more precise and comprehensive analysis, taking into account hourly variations, equipment schedules, and other factors that impact cooling loads. This research highlights the need for careful selection of the appropriate calculation method to ensure the efficient design of HVAC systems, maximizing energy efficiency, and maintaining occupant comfort. The study concludes that for projects requiring high accuracy, particularly in complex or large spaces, dynamic simulation tools like HAP 5.01 are preferable. Detailed cooling load results and comparisons are provided in the supplementary documentation, offering further insights into the analysis and its implications for HVAC design.
Enhancing Conveyor Belt Performance: Evaluating the Impact of In-creased Capacity Using Belt Analyst Software Golwa, Gian Villany; Murdiyati, Sari; Satria, Muhammad Kevin
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 1 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i1.19449

Abstract

This study investigates the effects of increasing conveyor belt capacity from 148.5 tons per hour (t/h) to 180 t/h on the overall system performance, employing both manual measurements and simulations using Belt Analyst software. The research aims to evaluate critical parameters such as effective pulling force, motor power requirements, structural load, and belt deflection, which are essential for determining the feasibility and impact of such an upgrade. The analysis reveals that with the capacity increase, the effective pulling force required rises to 14,072 N, while the motor power usage escalates to 15 kW. Concurrently, the structural load experiences a significant increase from 46.144 kg/m to 56.238 kg/m, and belt deflection intensifies from 22 mm to 27 mm. These findings suggest that increasing the conveyor belt capacity to 180 t/h, may lead to increased stress on the structure and belt, which could potentially affect the lifespan and performance of the conveyor system. Furthermore, while the conveyor system's performance enhances at the higher capacity, it also places additional stress on the system's components. The study further examines the implications of these changes, emphasizing the potential risks to the conveyor belt’s structural integrity and the possible reduction in its lifespan due to the increased mechanical stress. It is highlighted that careful consideration and precise engineering adjustments are necessary when planning capacity enhancements to avoid adverse effects on the system's longevity and reliability.
Design and Analysis of a Vertical Axis Ocean Current Turbine Tunnel Using SolidWorks Computational Fluid Dynamics Gunawan, Hardi; Ruhyat, Nanang; Novianto, Sentot
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 1 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i1.27652

Abstract

The development of renewable energy in the marine power generation sector presents a promising approach to producing electrical energy in a sustainable and environmentally friendly manner. Indonesia, with its vast oceanic territory, holds significant potential for harnessing marine energy. However, the relatively slow speed of ocean currents in the region, typically ranging from 0.1 m/s to 1.5 m/s, poses a challenge to the efficiency of marine power generation. To overcome this limitation, this research focuses on the design and analysis of a vertical-axis ocean current turbine tunnel aimed at increasing the speed of ocean currents, thereby enhancing the overall efficiency of energy production. The study combines a thorough literature review with experimental research methods, utilizing SolidWorks Computational Fluid Dynamics (CFD) software to simulate the tunnel's impact on ocean current velocity. The simulations reveal that the tunnel construction significantly boosts current speeds, increasing them from 1.0 m/s to 1.7 m/s, and from 1.5 m/s to 2.6 m/s. This increase in velocity directly translates to higher kinetic energy available for conversion into electrical power by the turbine. Moreover, the study shows that the tunnel construction contributes to a more uniform flow of ocean currents, as evidenced by the Reynolds numbers obtained—100.250 at a current speed of 1.0 m/s and 150.375 at 1.5 m/s. These values, being below 2000, indicate laminar flow conditions within the tunnel, which are beneficial for optimizing turbine performance by reducing turbulence and ensuring a stable energy output. The findings underscore the effectiveness of the tunnel design in improving the efficiency of vertical-axis ocean current turbines, making it a viable solution for enhancing renewable energy production in regions with low ocean current speeds.
Optimized Frame Design for Head Loss Testing Equipment Through Material Strength Analysis Wermasaubun, Hendrikus; Fitri, Muhamad; Hamid, Abdul; Romahadi, Dedik
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 6, No 1 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v6i1.18915

Abstract

This article presents the design and analysis of a frame for head loss testing equipment, crucial for evaluating flow losses in pipe installations. The objective was to develop a robust yet lightweight frame that could withstand the operational loads imposed by the testing equipment. The frame, which supports essential components such as pipes, venturi meters, elbows, and reducers, was constructed using ASTM A500 hollow sections with dimensions of 20 x 20 x 1.6 mm and 35 x 35 x 1.6 mm. These dimensions were selected for their balance between strength and weight, validated through strength analysis and SolidWorks simulations. Conducted at Universitas Mercu Buana, the project involved the design, manufacturing, and testing of the frame to determine its load-bearing capacity. The results from the SolidWorks simulations confirmed the frame's structural integrity, which was further validated by its successful application in a practical setup. This study demonstrates the effectiveness of a systematic design approach, integrating material selection, load analysis, and simulation to achieve an optimal solution. The findings contribute valuable insights into the use of ASTM A500 hollow sections in structural applications, particularly where both strength and weight are critical. This work sets a precedent for future designs in mechanical engineering, offering a reliable framework for developing durable and efficient testing equipment.

Page 1 of 1 | Total Record : 6