cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Buletin Peternakan
ISSN : 01264400     EISSN : 2407876X     DOI : https://doi.org/10.21059/buletinpeternak
Core Subject : Health, Education,
Bulletin of Animal Science is published every four months. The Annual subscription rate is Rp. 150.000,-/year. Bulletin receives original papers in animal science and technology which are not published at any other journals.
Arjuna Subject : -
Articles 1,046 Documents
PROFILE OF 3’FLANKING REGION OF LEPTIN GENE IN SUMBA ONGOLE (SO) CATTLE Widya Pintaka Bayu Putra; Paskah Partogi Agung; Ari Sulistyo Wulandari
Buletin Peternakan Vol 41, No 4 (2017): BULETIN PETERNAKAN VOL. 41 (4) NOVEMBER 2017
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v41i4.26149

Abstract

Leptin is a protein involved in the regulation of feed intake, fat metabolism, whole body energy balance and hematopoiesis in cattle. The diversity of the Leptin (LEP) gene in Indonesian indigenous cattle can be used as molecular livestock selection to improve productivity. The objective of this study was to identify Single Nucleotide Polymorphisms (SNP) in the 3’flanking region of LEP gene from 31 heads of Sumba Ongole (Bos indicus) cattle. A total of 17 SNP’s in the 3’flanking region (3506 - 4019 bp) of the LEP gene were identified according to GenBank: U50365. Five SNP’s (g.C3558T; g.G3566T; g.A3567C; g.G3574A; g.C3575A) were found in all samples. The moderate Polymorphic Informative Content (PIC) values (0.25<PIC<0.50) were found on nine SNP’s g.3565insG g.C3576A (0.29); g.C3577T (0.28); g.A3578C/G (0.45); g.C3579T (0.27); g.C3580T/A (0.47); g.C3581T (0.37); g.A3582G (0.38) and g.A3873G (0.35). The low PIC values (PIC < 0.25) were found on three SNP’s g.G3573C (0.21); g.G3661A (0.22) dan g.T3868C (0.17). Hence, a insertion mutation was found in position g.3565insG with frequency of 0.66. The next study of polymorphism in 3’flanking region trough more sample addition and production record are important to find the Marker Assisted Selection (MAS) for production traits.
Biosorption of Metal Ions on Methanol Dehydrogenase Enzymatic Activity of Bradyrhizobium japonicum USDA110 Novita Kurniawati; Ambar Pertiwiningrum; Yuny Erwanto; Nanung Agus Fitriyanto; Mohammad Zainal Abidin
Buletin Peternakan Vol 42, No 2 (2018): BULETIN PETERNAKAN VOL. 42 (2) MAY 2018
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v42i2.26195

Abstract

This research aims to understand the effect of metal ions bioabsorption which belong on different elemental groups to the methanol dehydrogenase (MDH) enzymatic activity in nitrogen-fixing bacteria Bradyhizobium japonicum USDA 110. Ten metal ions with each have 30μM concentration were added to grow Bradyhizobium japonicum USDA 110 in 10-1 diluted nutrient medium. The MDH activity test showed a similar result between the bacteria grown in medium without metal ions addition (control) and the bacteria were grown in a calcium ion/Ca2+ added media. The highest MDH enzymatic activity was shown on the bacteria grown in a magnesium/Mg2+ added medium, which showed 0.08 (U/mg) enzymatic activities. The addition of magnesium/Mg2+ metal ion accelerates the bacterial growth by 2.6 times and MDH activity by 1.28 times compared to control. The MDH enzyme is essential, especially for bacteria which exist in the soil environment, to adapt to high methanol concentration and to support bacterial anaerobic growth capacity along with plant symbiotic process. Moreover, the MDH activity staining method could also act as pollutant indicators like metal ions and hydrocarbon derivates. This research concluded that metal ions biosorption (calcium/Ca2+ and magnesium/Mg2+) are required for bacterial cells reproduction and oxidation of single carbon chain compounds like methanol. The nitrogen-fixing symbiotic bacteria, Bradyhizobium japonicum USDA 110 showed high MDH activity after the two metal ions absorption. However, contrary results were shown on vanadium/V3+, manganese/Mn2+, iron/Fe3+, copper/Cu2+, zinc/Zn2+, and aluminum/Al3+ absorption, which showed low MDH activity and cells biomass.
Utilization of Gamma Irradiated Aspergillus niger to Improve Oil Palm by-Product Digestibility Teguh Wahyono; Nana Mulyana; Putri Amanda; Siti Nurbayti; Suharyono Soharyono
Buletin Peternakan Vol 42, No 1 (2018): BULETIN PETERNAKAN VOL. 42 (1) FEBRUARY 2018
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v42i1.27706

Abstract

This study was conducted to determine the effect of fermentation using irradiated A. Niger on in vitro rumen fermentation characteristics of oil palm by-products. Completely randomized design with eight treatments and four replications was applied in this experiment. The treatments were kernel shell (CK), palm frond (PKS), oil palm empty bunches (TKKS), CK+PKS+TKKS (mix), fermented kernel shell (CKF), fermented palm frond (PKSF), fermented oil palm empty bunches (TKKSF) and fermented mix (mixF). The results showed that fermentation process reduced NDF content of PKS and TKKS by 7.42 and 7.09% respectively. Fermentation also decreased ADF content of TKKS by 7.35%. Maximum total gas production (a+b) of TKKS and mix sample decreased after fermentation process (P<0.05) by 52.92 and 35.60% respectively. Total VFA production increased on kernel shell and palm fronds samples after fermentation process (P<0.05) however CO2:CH4 ratio tended to be decrease. The conclusion of this study was the fermentation process by irradiated A. niger improved rumen fermentation characteristics of oil palm by-products, however more appropriate strategy is needed to reduce CH4 emissions.
The Use of Glutaraldehyde Tanning Materials for Goat Skin Tanning Laili Rachmawati; Emiliana Anggriyani
Buletin Peternakan Vol 42, No 2 (2018): BULETIN PETERNAKAN VOL. 42 (2) MAY 2018
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v42i2.27721

Abstract

Tanning process using free chromed material is needed to reduce toxic content in leather. The aims of this study is to increase byproducts of livestock by goat skin tanning with free chrome tanning materials. This study used glutaraldehyde as tanning materials. Goat skins were tanned become upholstery leather, and then physical quality was determined. The materials of this study were pickle goat skin. Physical testing conducted in Balai Besar Kulit, Karet dan Plastik (BBKKP) Yogyakarta. The results were analyzed descriptively using SPSS version 17.0 for Windows. Statistical analysis showed that the value of tensile strength, elongation, tear strength, sewing strength, scrub resistance of paint to dry and wet were 166.025 ± 72.315 kg/cm²; 69.910 ± 9.107%; 26.785 ± 6.031 N/cm; 115.120 ± 18.681 kg/cm; 0.775 ± 0.353; 0.775 ± 0.353 respectively. This study showed that the physical quality of upholstery leather which tanned using free chrome tanning materials have the physical qualities that met with SNI standard for leather upholstery.
Direct Stimulation by Methanol Addition on the Cultured Medium for Methanol Dehydrogenase Protein Purification from Bradyrhizobium japonicum USDA110 Novita Kurniawati; Ambar Pertiwiningrum; Yuny Erwanto; Nanung Agus Fitriyanto; Mohammad Zainal Abidin
Buletin Peternakan Vol 42, No 3 (2018): BULETIN PETERNAKAN VOL. 42 (3) AUGUST 2018
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v42i3.28155

Abstract

Methanol dehydrogenase (MDH) enzyme was purified from Bradyrhizobium japonicum USDA110 cell-free extract. The bacteria were grown in a culture medium with direct 0.5% methanol addition aimed to stimulates the MDH catalytic enzyme activation. Bradyrhizobium japonicum USDA110 MDH enzyme was purified by using 25 mM 2-(N-morpholine) ethanesulfonic acid/MES pH 5.5 buffer and 1 M sodium chloride/NaCl which separated into three columns, the first column was PD-10 for buffer exchange; the second column was HiTrap Sepharose HP to obtain unbonded fraction in the column; and the third column was Mono S 5/50 GL integrated with two pumps HPLC (high-performance liquid chromatography) to obtain pure MDH enzyme for serial changing of 1 M NaCl-25mM MES pH 5.5 with the flow rate at 1 ml/min. The protein concentration and MDH catalytic enzyme activity were observed on each purification process starting from the cell-free extract to pure MDH enzyme. The pure MDH enzyme was obtained by Mono S 5/50 GL-HPLC purification which showed a single band on SDS PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The MDH enzyme purification from Bradyrhizobium japonicum USDA110 showed 90-fold purification, a sub-molecular weight of 63 kDa, specific activity at 2.69 U/mg, and optimum activity at a 35oC temperature and pH 9.     
The Quality of Boer Goat Semen Preserved with Sugar Palm Juice Muhammad Rizal; Muhammad Riyadhi; Abrani Sulaiman
Buletin Peternakan Vol 42, No 2 (2018): BULETIN PETERNAKAN VOL. 42 (2) MAY 2018
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v42i2.28236

Abstract

The objective of this study was to examine the effect of seminal plasma on viability of Boer goat spermatozoa and effectiveness of sugar palm juice as an alternative extender during preservation at 5ºC. Semen of two Boer goats were collected using an artificial vagina. Fresh semen were evaluated and divided in equal volume into four tubes. Semen in the first and second tubes diluted with 80% sugar palm juice + 20% egg yolk (P1) and Andromed (P2), respectively. Semen in the third and fourth tubes were centrifuged with 3,000 RPM for 20 minutes, and the supernatant removed. diluted with 80% sugar palm juice + 20% egg yolk (P3) and Andromed (P4), respectively. Diluted-semen were preserved in refrigerator at 5oC, and quality of the spermatozoa including motile spermatozoa (MS), live spermatozoa (LS), and intact plasma membrane (IPM) were evaluated every day for four days. Results of this study showed that at day-2 preservation, mean percentages of MS, LS, and IPM for P2 (72, 83.4, and 83.4%), P3 (72, 82.6, and 82.2%), and P4 (72, 83, 83.8%) were significantly (P<0.05) higher than P1 (3, 24.8, and 25.2%). At day-3 preservation, mean percentages of MS, LS, and IPM for P2 (57, 65.6, and 69.6%) was significantly (P<0.05) higher than P3 (21, 34.8, and 31.8%), P4 (22, 33.6, and 31.2%), and P1 (0, 0, and 0%). In conclusion, semen of Boer goat to be preserved with extender containing egg yolk should be removed seminal plasma. Sugar palm juice containing egg yolk could be used as an extender for Boer goat semen, but should be applied in the AI program immediately after the semen is diluted.
The Type of Honeybees Forages in District of Pakem Sleman and Nglipar Gunungkidul Yogyakarta Agussalim Agussalim; Ali Agus; Nafiatul Umami; I Gede Suparta Budisatria
Buletin Peternakan Vol 42, No 1 (2018): BULETIN PETERNAKAN VOL. 42 (1) FEBRUARY 2018
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v42i1.28294

Abstract

This research aimed to investigate the type of plants for honeybees forages in Pakem Sleman and Nglipar Gunungkidul. This research was conducted from 16 March to 12 May 2016. The method used was direct observation in the plantations, fields, and forests. The type of plants observed were dominant plants, so can be developed beekeeping, honey. To determine the type of plants that produce nectar and pollen, one or two samples of flower in each plant were taken, then the availability of nectar and pollen was checked. The data of honeybees forage types were analyzed descriptively. The results showed that the type of honeybees forages in Pakem Sleman consisted of coconut, coffee, banana, calliandra, avocado, rice, albizia, chili, tomato, long beans, mustard green, maize, cucumber, melinjo, mahogany, cassava, and cherry. Honeybees forages in Nglipar Gunungkidul consisted of coconut, albizia, acacia, banana, peanuts, tamarind, eucalyptus, rambutan, sorghum, cacao, soybeans, cassava, maize, rice, rose wood, mahogany, and cherry. Thus, Pakem Sleman and Nglipar Gunungkidul have great potential for development of beekeeping honey.
Modeling How the Leader Power Affecting Performances of the Smallholder Beef Farming Novie Andri Setianto; Nunung Noor Hidayat; Pambudi Yuwono
Buletin Peternakan Vol 42, No 1 (2018): BULETIN PETERNAKAN VOL. 42 (1) FEBRUARY 2018
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v42i1.28307

Abstract

This study aimed to explore how the leader power is affecting the performance of beef farmer group. The research was undertaken in two farmers group in Kabupaten Banjarnegara, Central Java Province involving 35 farmers and two beef traders. Systems thinking the approach was chosen about its capability to capture the complexity of the beef farming systems. A combination of semi-structured interviews, in-depth interviews, and workshop have been conducted to finalize this study. The discussion were focused on three aspects; (1) daily activities; (2) resources used and affected by those activities; and (3) pressures that are directly affected the resources and activities. The result was presented in a Causal Loop Diagram (CLD) which generated using Vensim® software. The CLD showed that leader power affects the group performance in two reinforcing loops. Firstly, leader power positively linked to the decision for allocating profit to group reinvestment. Secondly, for allocating proportion for breeding. Farmer’s actual income become the leverage of the power dimension. Income will enforce the power thus makes the loop virtuous, whereas a loss will reduce power and makes the power loop vicious. 
Farmer’s Individual Potential in Different Farm Sizes of Local Beef Cattle Farming in Kebumen Regency, Indonesia Mochamad Sugiarto; Syarifuddin Nur; Oentoeng Edy Jatmiko; Marti Ike Wahyu
Buletin Peternakan Vol 42, No 1 (2018): BULETIN PETERNAKAN VOL. 42 (1) FEBRUARY 2018
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v42i1.28506

Abstract

This study aims (1) identify the farmer’s individual potential in different farm sizes and (2) analyze the relationship of basic potential, availability of man power potential, provision of production input potential, and technological mastery potential with the increasing farm size of PO Kebumen cattle. 100 respondents (breeding farmers) from 6 sub-districts known as PO Kebumen beef cattle development centers are selected using a multistage sampling method. The results of Kruskal Wallis Test explain that farmer’s individual potential of PO Kebumen beef cattle farming showed significant difference at different farm size (P<0.01). Based on the Spearman rank correlation test, the availability of technological potential and the provision of production input potential are considered as the important elements regarding to the increasing farm size of PO Kebumen beef cattle (P <0.01). The mastery of technology and the provision of production inputs are the driving factors for increasing the farm size of PO Kebumen cattle.
Introduction of Dwarf Elephant Grass (Pennisetum purpureum cv. Mott) and Annual Legumes in the Disused Limestone Mining in Karst Gombong Area, Central Java, Indonesia Doso Sarwanto; Sari Eko Tuswati
Buletin Peternakan Vol 42, No 1 (2018): BULETIN PETERNAKAN VOL. 42 (1) FEBRUARY 2018
Publisher : Faculty of Animal Science, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21059/buletinpeternak.v42i1.28734

Abstract

The aim of this research was to revegetate the disused limestone quarry by introducing dwarf elephant grass (Pennisetum purpureum cv. Mott) and annual legumes such as peanuts (Arachis hypogaea L.), soybeans (Glycine max), cowpeas (Vigna unguiculata) and  mung beans (Vigna radiata). The study was conducted experimentally in a disused limestone quarry applying Completely Randomized Design. The research method used was experimental in disused limestone mining in karst Gombong area applying Completely Randomized Design (CRD). Treatment consisted of 6 planting methods with 4 replicates. The 6 treatments research were the followings: RO: Single planting of dwarf elephant grass,  R1: Single planting of dwarf elephant grass + 1.5 kg/m2 goat compost,  R2: Mixture Planting of dwarf elephant grass + legume peanuts + 1.5 kg/m2 goat compost,  R3: Mixture planting of dwarf elephant grass + legume soybeans + 1.5 kg/m2 goat compost,  R4: Mixture planting of dwarf elephant grass + legume cowpeas + 1.5 kg/m2 goat compost and R5: Mixture planting of dwarf elephant grass + legume mung beans + 1.5 kg/m2 goat compost. The measured response variables were plant’s height, fresh yield, dry matter yield and crude protein content of dwarf elephant grass aged 8 weeks. The result showed that the addition of goat compost and the planting method of annual legumes on the disused limestone quarry had highly significant influence (P<0.01) on the increase productivity and quality of dwarf elephant grass. The best method of planting dwarf elephant grass (Pennisetum purpureum cv. Mott) on disused limestone mining in karst Gombong area is mixture planting with soybean legumes (Glycine max) and adding the 1.5 kg/m2 goat compost.

Page 24 of 105 | Total Record : 1046


Filter by Year

1987 2025


Filter By Issues
All Issue Vol 49, No 4 (2025): BULETIN PETERNAKAN VOL. 49 (4) November 2025 Vol 49, No 3 (2025): BULETIN PETERNAKAN VOL. 49 (3) August 2025 Vol 49, No 2 (2025): BULETIN PETERNAKAN VOL. 49 (2) MAY 2025 Vol 49, No 1 (2025): BULETIN PETERNAKAN VOL. 49 (1) FEBRUARY 2025 Vol 48, No 4 (2024): BULETIN PETERNAKAN VOL. 48 (4) NOVEMBER 2024 Vol 48, No 3 (2024): BULETIN PETERNAKAN VOL. 48 (3) AUGUST 2024 Vol 48, No 2 (2024): BULETIN PETERNAKAN VOL. 48 (2) MAY 2024 Vol 48, No 1 (2024): BULETIN PETERNAKAN VOL. 48 (1) FEBRUARY 2024 Vol 47, No 4 (2023): BULETIN PETERNAKAN VOL. 47 (4) NOVEMBER 2023 Vol 47, No 3 (2023): BULETIN PETERNAKAN VOL. 47 (3) AUGUST 2023 Vol 47, No 2 (2023): BULETIN PETERNAKAN VOL. 47 (2) MAY 2023 Vol 47, No 1 (2023): BULETIN PETERNAKAN VOL. 47 (1) FEBRUARY 2023 Vol 46, No 4 (2022): BULETIN PETERNAKAN VOL. 46 (4) NOVEMBER 2022 Vol 46, No 3 (2022): BULETIN PETERNAKAN VOL. 46 (3) AUGUST 2022 Vol 46, No 2 (2022): BULETIN PETERNAKAN VOL. 46 (2) MAY 2022 Vol 46, No 1 (2022): BULETIN PETERNAKAN VOL. 46 (1) FEBRUARY 2022 Vol 45, No 4 (2021): BULETIN PETERNAKAN VOL. 45 (4) NOVEMBER 2021 Vol 45, No 3 (2021): BULETIN PETERNAKAN VOL. 45 (3) AUGUST 2021 Vol 45, No 2 (2021): BULETIN PETERNAKAN VOL. 45 (2) MAY 2021 Vol 45, No 1 (2021): BULETIN PETERNAKAN VOL. 45 (1) FEBRUARY 2021 Vol 44, No 4 (2020): BULETIN PETERNAKAN VOL. 44 (4) NOVEMBER 2020 Vol 44, No 3 (2020): BULETIN PETERNAKAN VOL. 44 (3) AUGUST 2020 Vol 44, No 2 (2020): BULETIN PETERNAKAN VOL. 44 (2) MAY 2020 Vol 44, No 1 (2020): BULETIN PETERNAKAN VOL. 44 (1) FEBRUARY 2020 Vol 43, No 4 (2019): BULETIN PETERNAKAN VOL. 43 (4) NOVEMBER 2019 Vol 43, No 3 (2019): BULETIN PETERNAKAN VOL. 43 (3) AUGUST 2019 Vol 43, No 2 (2019): BULETIN PETERNAKAN VOL. 43 (2) MAY 2019 Vol 43, No 1 (2019): BULETIN PETERNAKAN VOL. 43 (1) FEBRUARY 2019 Vol 42, No 4 (2018): BULETIN PETERNAKAN VOL. 42 (4) NOVEMBER 2018 Vol 42, No 3 (2018): BULETIN PETERNAKAN VOL. 42 (3) AUGUST 2018 Vol 42, No 2 (2018): BULETIN PETERNAKAN VOL. 42 (2) MAY 2018 Vol 42, No 1 (2018): BULETIN PETERNAKAN VOL. 42 (1) FEBRUARY 2018 Vol 41, No 4 (2017): BULETIN PETERNAKAN VOL. 41 (4) NOVEMBER 2017 Vol 41, No 3 (2017): BULETIN PETERNAKAN VOL. 41 (3) AGUSTUS 2017 Vol 41, No 2 (2017): BULETIN PETERNAKAN VOL. 41 (2) MEI 2017 Vol 41, No 1 (2017): BULETIN PETERNAKAN VOL. 41 (1) FEBRUARI 2017 Vol 40, No 3 (2016): BULETIN PETERNAKAN VOL. 40 (3) OKTOBER 2016 Vol 40, No 2 (2016): BULETIN PETERNAKAN VOL. 40 (2) JUNI 2016 Vol 40, No 1 (2016): BULETIN PETERNAKAN VOL. 40 (1) FEBRUARI 2016 Vol 39, No 3 (2015): BULETIN PETERNAKAN VOL. 39 (3) OKTOBER 2015 Vol 39, No 2 (2015): BULETIN PETERNAKAN VOL. 39 (2) JUNI 2015 Vol 39, No 1 (2015): BULETIN PETERNAKAN VOL. 39 (1) FEBRUARI 2015 Vol 38, No 3 (2014): BULETIN PETERNAKAN VOL. 38 (3) OKTOBER 2014 Vol 38, No 2 (2014): BULETIN PETERNAKAN VOL. 38 (2) JUNI 2014 Vol 38, No 1 (2014): BULETIN PETERNAKAN VOL. 38 (1) FEBRUARI 2014 Vol 37, No 3 (2013): BULETIN PETERNAKAN VOL. 37 (3) OKTOBER 2013 Vol 37, No 2 (2013): BULETIN PETERNAKAN VOL. 37 (2) JUNI 2013 Vol 37, No 1 (2013): Buletin Peternakan Vol. 37 (1) Februari 2013 Vol 36, No 3 (2012): Buletin Peternakan Vol. 36 (3) Oktober 2012 Vol 36, No 2 (2012): Buletin Peternakan Vol. 36 (2) Juni 2012 Vol 36, No 1 (2012): Buletin Peternakan Vol. 36 (1) Februari 2012 Vol 35, No 3 (2011): Buletin Peternakan Vol. 35 (3) Oktober 2011 Vol 35, No 2 (2011): Buletin Peternakan Vol. 35 (2) Juni 2011 Vol 35, No 1 (2011): Buletin Peternakan Vol. 35 (1) Februari 2011 Vol 34, No 3 (2010): Buletin Peternakan Vol. 34 (3) Oktober 2010 Vol 34, No 2 (2010): Buletin Peternakan Vol. 34 (2) Juni 2010 Vol 34, No 1 (2010): Buletin Peternakan Vol. 34 (1) Februari 2010 Vol 33, No 3 (2009): Buletin Peternakan Vol. 33 (3) Oktober 2009 Vol 33, No 2 (2009): Buletin Peternakan Vol. 33 (2) Juni 2009 Vol 33, No 1 (2009): Buletin Peternakan Vol. 33 (1) Februari 2009 Vol 32, No 3 (2008): Buletin Peternakan Vol. 32 (3) Oktober 2008 Vol 32, No 2 (2008): Buletin Peternakan Vol. 32 (2) Juni 2008 Vol 32, No 1 (2008): Buletin Peternakan Vol. 32 (1) Februari 2008 Vol 31, No 4 (2007): Buletin Peternakan Vol. 31 (4) November 2007 Vol 31, No 3 (2007): Buletin Peternakan Vol. 31 (3) Agustus 2007 Vol 31, No 2 (2007): Buletin Peternakan Vol. 31 (2) Mei 2007 Vol 31, No 1 (2007): Buletin Peternakan Vol. 31 (1) Februari 2007 Vol 30, No 4 (2006): Buletin Peternakan Vol. 30 (4) November 2006 Vol 30, No 3 (2006): Buletin Peternakan Vol. 30 (3) Agustus 2006 Vol 30, No 2 (2006): Buletin Peternakan Vol. 30 (2) Mei 2006 Vol 30, No 1 (2006): Buletin Peternakan Vol. 30 (1) Februari 2006 Vol 29, No 4 (2005): Buletin Peternakan Vol. 29 (4) November 2005 Vol 29, No 3 (2005): Buletin Peternakan Vol. 29 (3) Agustus 2005 Vol 29, No 2 (2005): Buletin Peternakan Vol. 29 (2) Mei 2005 Vol 29, No 1 (2005): Buletin Peternakan Vol. 29 (1) Februari 2005 Vol 28, No 4 (2004): Buletin Peternakan Vol. 28 (4) November 2004 Vol 28, No 3 (2004): Buletin Peternakan Vol. 28 (3) Agustus 2004 Vol 28, No 2 (2004): Buletin Peternakan Vol. 28 (2) Mei 2004 Vol 28, No 1 (2004): Buletin Peternakan Vol. 28 (1) Februari 2004 Vol 27, No 4 (2003): Buletin Peternakan Vol. 27 (4) November 2003 Vol 27, No 3 (2003): Buletin Peternakan Vol. 27 (3) Agustus 2003 Vol 27, No 2 (2003): Buletin Peternakan Vol. 27 (2) Mei 2003 Vol 27, No 1 (2003): Buletin Peternakan Vol. 27 (1) Februari 2003 Vol 26, No 4 (2002): Buletin Peternakan Vol. 26 (4) November 2002 Vol 26, No 1 (2002): Buletin Peternakan Vol. 26 (1) Februari 2002 Vol 25, No 4 (2001): Buletin Peternakan Vol. 25 (4) November 2001 Vol 25, No 3 (2001): Buletin Peternakan Vol. 25 (3) Agustus 2001 Vol 25, No 2 (2001): Buletin Peternakan Vol. 25 (2) Mei 2001 Vol 25, No 1 (2001): Buletin Peternakan Vol. 25 (1) Februari 2001 Vol 24, No 4 (2000): Buletin Peternakan Vol. 24 (4) November 2000 Vol 24, No 3 (2000): Buletin Peternakan Vol. 24 (3) Agustus 2000 Vol 24, No 2 (2000): Buletin Peternakan Vol. 24 (2) Mei 2000 Vol 24, No 1 (2000): Buletin Peternakan Vol. 24 (1) Februari 2000 Vol 23, No 4 (1999): Buletin Peternakan Vol. 23 (4) November 1999 Vol 23, No 3 (1999): Buletin Peternakan Vol. 23 (3) Agustus 1999 Vol 23, No 2 (1999): Buletin Peternakan Vol. 23 (2) Mei 1999 Vol 23, No 1 (1999): Buletin Peternakan Vol. 23 (1) Februari 1999 Vol 22, No 4 (1998): Buletin Peternakan Vol. 22 (4) November 1998 Vol 21, No 3 (1997): Buletin Peternakan Vol. 21 (3) November 1997 Vol 21, No 1 (1997): Buletin Peternakan Vol. 21 (1) April 1997 Vol 20, No 2 (1996): Buletin Peternakan Vol. 20 (2) Desember 1996 Vol 20, No 1 (1996): Buletin Peternakan Vol. 20 (1) Juni 1996 Vol 19, No 2 (1995): Buletin Peternakan Vol. 19 (2) Desember 1995 Vol 19, No 1 (1995): Buletin Peternakan Vol. 19 (1) Juni 1995 1995: BULETIN PETERNAKAN SPECIAL EDITION 1995 Vol 18, No 4 (1994): Buletin Peternakan Vol. 18 (4) Desember 1994 Vol 17, No 1 (1993): Buletin Peternakan Vol. 17 (1) Juni 1993 Vol 16, No 1 (1992): Buletin Peternakan Vol. 16 (1) Desember 1992 Vol 15, No 2 (1991): Buletin Peternakan Vol. 15 (2) Desember 1991 Vol 15, No 1 (1991): Buletin Peternakan Vol. 15 (1) Juni 1991 Vol 14, No 2 (1990): Buletin Peternakan Vol. 14 (2) Desember 1990 Vol 14, No 1 (1990): Buletin Peternakan Vol. 14 (1) Juni 1990 Vol 13, No 1 (1989): Buletin Peternakan Vol. 13 (1) September 1989 Vol 11, No 2 (1987): Buletin Peternakan Vol. 11 (2) September 1987 Vol 11, No 1 (1987): Buletin Peternakan Vol. 11 (1) Maret 1987 More Issue