cover
Contact Name
Agung Ari Wibowo
Contact Email
agung.ari@polinema.ac.id
Phone
+62341404424
Journal Mail Official
jtkl@polinema.ac.id
Editorial Address
Jl. Soekarno Hatta No. 9, Malang, Indonesia
Location
Kota malang,
Jawa timur
INDONESIA
Jurnal Teknik Kimia dan Lingkungan
ISSN : 25798537     EISSN : 25799746     DOI : http://dx.doi.org/10.33795/jtkl
JTKL editors welcome manuscripts in the form of research articles, literature review, or case reports that have not been accepted for publication or even published in other scientific journals. Articles published in cover key areas in the development of chemical and environmental engineering sciences, such as: Energy Waste treatment Unit operation Thermodynamic Process simulation Development and application of new material Chemical engineering reaction Biochemical Biomass Corrosion technology The "JURNAL TEKNIK KIMIA DAN LINGKUNGAN" journal is a peer-reviewed Open Access scientific journal published by Politeknik Negeri Malang. This journal first appeared in October 2017. The main purpose of the journal was to support publication of the results of scientific and research activities in the field of Chemical and Environmental Engineering. It is published twice a year in April and October.
Articles 133 Documents
Kinetic Study of Co-pyrolysis of Kelakai (Stenochlaena palustris) and Low-rank Coal (Lignite) Fadhillah, Hilda Nur; Wijayanti, Hesti; Mardina, Primata; Juwita, Rinna; Nata, Iryanti Fatyasari; Putra, Meilana Dharma; Madani, Zikri Daffa Aulia; Hendrawan, Rangga Dwi
Jurnal Teknik Kimia dan Lingkungan Vol. 9 No. 2 (2025): October 2025
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jtkl.v9i2.7195

Abstract

Recently, fossil fuels have still become a main source of energy and chemicals. Biomass conversion has become a promising technology to convert biomass into bio-energy and bio-chemicals. Kelakai, as a potential biomass, is abundant in wetland areas such as Kalimantan (Indonesia) and many other Asian regions, so that low-rank coal (lignite). Co-pyrolysis, the combined pyrolysis of biomass and lignite, is an attractive technique considering to its potential to enhance the efficiency of pyrolysis products. In this study, the thermal decomposition behavior and kinetic of co-pyrolysis of kelakai and lignite at various mass ratio composition (1:0, 3:1, 1:1, 1:3, and 0:1) were investigated. The experiments were performed on a thermogravimetric analyzer (TGA). The TGA result indicated that the kelakai highly decomposed at 257-400℃, while lignite was 286-500℃. Their blends were in between. In addition, thermogravimetric data were subsequently applied to a kinetic analysis based on the Arrhenius equation, with a first-order reaction. The kinetic analysis results, including activation energy and pre-exponential factor, were determined for the kelakai and lignite mixture were found to be in the range of 10.22-10.98 kJ/mol and 0.0651-0.1351 min-1, respectively. Knowledge of thermal decomposition characteristics of kelakai and its kinetics is essential for optimizing pyrolysis design. The co-pyrolysis kelakai and lignite resulted in the highest bio-oil yield of  26.86 wt% at the ratio of  0:1 and the lowest yield of 12.51 wt% for the ratio of 1:0, when using mixed ratios of kelakai and lignite, the highest yield was 24.60% (1:3) and the lowest yield was 21.18 wt% (1:1).
Optimization of Biodiesel Production from Sunflower Oil Using Sodalite-Based Catalyst via Taguchi Method Hamid, Abdul; Jakfar, Amin; Rahmawati, Zeni; Armansyah, Muhammad Doni; Wahyuni, Tri; Purbaningtias, Tri Esti; Febriana, Ike Dayi; Abdullah, Mohammad; Ilmah, Aurista Miftahatul; Rohmah, Faizatur
Jurnal Teknik Kimia dan Lingkungan Vol. 9 No. 2 (2025): October 2025
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jtkl.v9i2.7345

Abstract

The growing demand for alternative fuels has highlighted biodiesel as sustainable substitute for fossil diesel. In this study, biodiesel was produced from sunflower seed oil using heterogeneous catalyst synthesized from natural kaolin into sodalite via hydrothermal process. The synthesized catalyst was characterized using XRD, FTIR and SEM-EDS, confirming the transformation of kaolinite to sodalite. The transesterification reaction was conducted under varying methanol-to-oil molar ratios (1:12, 1:18, and 1:24) and temperatures (60, 65, and 70°C). A Taguchi orthogonal array (L9) was employed to statistically evaluate the effects of these parameters on methyl ester yield. Experimental results showed that both methanol ratio and reaction temperature significantly influenced biodiesel yield, with the highest yield of 90.44% obtained at 70°C and 1:18 molar ratio. Signal-to-noise ratio and ANOVA analysis indicated that the methanol-to-oil ratio was the most dominant factor (46.05%) compared to temperature (40.55%). The resulting biodiesel exhibited a flash point of 158°C, acid value of 0.06 mg-KOH/g, and iodine value of 84.06 g-I₂/100g, satisfying most ASTM D6751 and SNI 7182:2015 standards, though viscosity and density exceeded standard limits. Emission testing showed 16% reduction in CO emissions with increasing biodiesel blends, while NO and NOx emissions slightly increased.
Innovation and Characterization of Zeolite from Matoa Fruit for Adsorption of Heavy Metals Cu(II) Rahman, Ainul Alim; Fadlil, Firmanullah; Tuheteru, Hajirum; Halijah, Siti
Jurnal Teknik Kimia dan Lingkungan Vol. 9 No. 2 (2025): October 2025
Publisher : Politeknik Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jtkl.v9i2.7390

Abstract

Matoa fruit is abundant in Papua and has not been optimally utilised. Matoa fruit consists of ash approximately 3.74%. The high ash and silica content make it highly suitable as a raw material for zeolite production. Zeolite can be used as a zeolite material to adsorb heavy metal Cu(II). Heavy metal pollution continues to increase with industrial growth. Heavy metals can harm human health. Innovation must continue addressing heavy metal pollution, such as Cu(II), to produce more efficient, cost-effective, and environmentally friendly technologies. This study aims to determine the ability of matoa fruit zeolite to adsorb heavy metal Cu(II). The characterization of zeolite was done using XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope). The synthesis process involved preparing sodium aluminate and sodium silicate solutions, followed by controlled crystallisation at 105°C for 24 hours. The zeolites were tested for adsorption with the independent variable being zeolite mass, while the dependent variables were contact time of 48 hours and stirring time of 4 hours. SEM analysis confirmed the cubic morphological characteristics of matoa fruit zeolite, classifying the product as matoa fruit zeolite. The main findings of the study showed that matoa fruit zeolite can reduce Cu metal levels in sewage-polluted water with 88.85% adsorption at 0.5 g in 50 ml of test solution.