cover
Contact Name
Amin Fatoni
Contact Email
aminfatoni@gmail.com
Phone
+62281-638793
Journal Mail Official
j.molekul@gmail.com
Editorial Address
Jurusan Kimia FMIPA UNSOED Jl Dr Soeparno 61, Karangwangkal, Purwokerto Utara, Kab. Banyumas Jawa Tengah, 53123
Location
Kab. banyumas,
Jawa tengah
INDONESIA
Molekul: Jurnal Ilmiah Kimia
Core Subject : Science,
The MOLEKUL is dedicated to fostering advancements in all branches of chemistry and its diverse sub-disciplines. It aims to publish high-quality research encompassing a wide range of topics, including but not limited to Pharmaceutical Chemistry, Biological Activities of Synthetic Drugs, Environmental Chemistry, Biochemistry, Polymer Chemistry, Petroleum Chemistry, and Agricultural Chemistry. By providing a platform for rigorous scientific inquiry and dissemination of knowledge, the journal strives to contribute to the understanding, innovation, and practical applications of chemistry in various fields. We encourage submissions that explore new methodologies, elucidate fundamental principles, address pressing challenges, and demonstrate the potential for real-world impact. Our journal welcomes original research articles, reviews, and perspectives from researchers, scholars, and professionals across the global scientific community, promoting interdisciplinary collaboration and the advancement of chemical sciences. The scope of this journal encompasses a wide range of topics within the field of chemistry, with a particular focus on advancing knowledge and innovation in the following areas: 1. Theoretical Chemistry and Environmental Chemistry: This includes theoretical studies, computational modeling, and experimental investigations related to chemical reactivity, molecular structures, spectroscopy, and the environmental fate and impact of chemicals. 2. Materials Synthesis for Energy and Environmental Applications: The journal welcomes research on the synthesis, characterization, and application of materials for energy storage, catalysis, solar energy conversion, pollution mitigation, and sustainable environmental technologies. 3. Isolation, Purification, and Modification of Biomolecules: Manuscripts addressing the isolation, purification, and modification of biomolecules, such as proteins, nucleic acids, carbohydrates, and lipids, along with their applications in areas such as biotechnology, drug discovery, and diagnostics, are of particular interest. 4. Fabrication, Development, and Validation of Analytical Methods: The journal encourages submissions focusing on the development and optimization of analytical techniques, including chromatography, spectroscopy, electrochemistry, and mass spectrometry. Topics may include method validation, sample preparation, quality control, and applications in diverse fields.
Articles 218 Documents
Voltammetric Determination of Paracetamol with Carbon Paste Electrode Modified with Molecularly Imprinted Electropolymer I Wayan Tanjung Aryasa; Indra Noviandri
Molekul Vol 17 No 1 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.1.5595

Abstract

Paracetamol is a commom analgesic and antipyretic drug which used for reliefing fever and head ache. The determination of paracetamol dose in pharmaceuticals is very important, becauce an overdose can cause fulminating hepatic necrosis and other toxic effects. Therefore, it is necessary to measure the dose of paracetamol for the patient with precision to avoid harm. Many analytical methodologies have been proposed for determination of paracetamol dose. One of the methods was developed in the past two decades. Generally, electroanalytical approach especially voltammetry method is particularly design for determination of paracetamol dose especially in modifying electrode. This study aims to modified carbon paste electrode with molecularly imprinted polymer (MIP). Significant advantages of using MIP are the superior stability, low cost and ease of preparation. The poly (3-aminiophenol) film was prepared by cyclic voltammetry method and 3-aminophenol monomer in supporting electrolyte (HClO4) with and whitout presence of paracetamol molecule. The effect of paracetamol was seen at cyclic voltammogram was founded, where oxidation peak potential of poly (3-aminophenol) shifted to more cathodic potentials from 0.948 to 0.780 V, in presence of paracetamol. The Ipa showed a good linear relationship with concentration in the range 0.01–0.1 mM, and the detection limit was 4,63 μM.
Selective Colorimetric Detection of Mercury(II) using Silver Nanoparticles-Chitosan Monica Avissa; Mohammad Alauhdin
Molekul Vol 17 No 1 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.1.5597

Abstract

Contamination of the environment by hazardous metal ions has been a major environmental issue for the past several decades. Among several hazardous metals, mercury ion (Hg(II)) is of particular concern as its compounds are extremely toxic. Hence, developing detection methods for traces of Hg(II) ions in aquatic systems is critical for mercury pollution mitigation. One method that can be used to monitor Hg(II) in aquatic systems is colorimetry-based method which is simple, rapid, and low-cost, yet selective and sensitive. The method can be conducted by applying the Localized Surface Plasmon Resonance phenomenon of metal nanoparticles, such as silver nanoparticles. There are non-Hg(II) ions in the aquatic environment that can interfere the measurements. Thus, a selective method is needed to obtain a valid measurement result. Here, we introduced silver nanoparticles-chitosan (AgNPs-Ch) synthesized by chemical reduction as a selective probe of Hg(II) in an aqueous solution. The AgNPs-Ch was synthesized from silver nitrate at 80°C using trisodium citrate and chitosan as reducing agent and stabilizer, respectively. The synthesized nanoparticles were spherical with an average size below 15.0 nm. Moreover, the AgNPs-Ch was selective for Hg(II) with a linearity of 0.9556 in the concentration range of 1 - 5 ppm and was able to detect the ion down to 1.33 ppm.
Molecular Docking of Xanthone Derivatives as Therapeutic Agent for Covid-19 Emmy Yuanita; Sudirman Sudirman; Ni Komang Tri Dharmayani; Maria Ulfa; Saprizal Hadisaputra; Jufrizal Syahri
Molekul Vol 17 No 1 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.1.5600

Abstract

Covid-19 has caused more than 14 million confirmed cases and more than 6 hundred deaths as of 21 July 2020 globally. However, there is no approved drug to treat the disease. Xanthone is a potential therapeutic option for the virus that have been tested using molecular docking. There were 12 of xanthone compounds and its derivatives which have been docked against two protein crystals, 2GX4.pdb and 6FV1.pdb, which obtained two potential compounds of hydroxyxanthone derivatives with sulfonate and chloro substitution. These compounds are potentially developed into one of the agents for the treatment of infection COVID-19 disease. Based on energy data and interactions with amino acid residues when compared with its own native ligands, namely NOL and E8E, respectively. Energy docking and energy docking interactions are equal to - 43.3057and - 45.5805 Kcal/mol respectively, during interactions with amino acid residues in the form of Gly 142, His 163, Cys144, Glu166, Gln164 and His 41. Based on these two data, it can be concluded that trihydroxyxanthone compounds 4 and 8 with chloro and sulfonate substitution are very potential to be developed as drug agents for Covid-19 disease therapy through protease inhibition.
Preparation and characterization of nanopowder of Acalypha hispida Leaves Extract Using Planetary Ball Milling Hamzah Alfarisi; Siti Sa'diah; Berry Juliandi; Tutik Wresdiyati
Molekul Vol 17 No 1 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.1.5601

Abstract

Acalypha hispida Burm.f. is commonly used as an ornamental plant known for pharmacological effects. The nanoscale extract increases bioavailability and bioactivity. This research aimed to produce and characterize nanopowder extract of A. hispida leaves. Powdered leaves were macerated in 96% ethanol, then was evaporated in the spry dryer. Nanopowder extract was produced using planetary ball milling at 5000 rpm in different milling times, namely 5 minutes (nanopowder A), 10 minutes (nanopowder B), and 40 minutes (nanopowder C). The nanopowder extracts were evaluated using a particle size analyzer, scanning electron microscope, and high-performance liquid chromatography. The average particle size of A. hispida crude extract was 1271 nm, and nanopowder A, B, and C respectively were 837.1 nm, 803.8, and 512.2 nm. The polydispersity index of A. hispida crude extract, nanopowder A, B, and C were 0.754, 0.696, 0.717, dan 0.612. The milling process for 40 minutes reduced the content of 5% gallic acid and 10.3% catechin. The SEM image of nanopowder C was smaller than crude extract. The best average particle size of nanopowder C (512.2 nm) and polydispersity index (0.612) were produced using PBM for 40 minutes at 5000 rpm.
Lipase Activity, Hematological and Blood Biochemistry of Osphronemus gouramy Fed with Suplementation of Spirulina platensis and Chlorella vulgaris Sorta Basar Ida Simanjuntak; Hana Hana; Riska Yunida; Maditaningtyas Hawwa Zuwanda
Molekul Vol 17 No 1 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.1.5602

Abstract

Spirulina platensis and Chlorella vulgaris are algae that contain high nutrients, such as protein, vitamins, and minerals. The purpose of this study was to determine the lipase activity, hematological, blood biochemistry and to obtain the most effective supplementation of Spirulina platensis and Chlorella vulgaris in feed to enhance lipase activity, hematological parameter, blood biochemistry of gourami. The study was conducted experimentally in which 100 gourami fish were assigned randomely to the following treatments: P1 = Spirulina platensis 6 g kg-1 feed; P2 = Chlorella vulgaris 4 g kg-1; P3 = Spirulina platensis 3 g kg-1 + Chlorella vulgaris 2 g kg-1; P4 = Spirulina platensis 2 g kg-1 + Chlorella vulgaris 3 g kg-1; and C = feed without supplementation as control, in four replicates. Lipase activity was measured in various digestive organs at pH 2, 5, 7, 8 and 10. The results showed that supplementation of Spirulina platensis and Chlorella vulgaris affected lipase activity; hematological parameter and blood biochemistry of gourami. The combination Spirulina platensis + Chlorella vulgaris supplementation in feed showed the highest increased of the lipase activity, hematological parameter and blood biochemistry of gourami. Spirulina platensis + Chlorella vulgaris supplementation in feed might improve growth and immunity since the increase of digestive enzyme functioning which enhances feed utilization and the increase of biochemical parameters of blood, respectively.
Discrimination of Metabolite Profiles of Gayo Roasted Arabica and Robusta Coffees Nizar Happyana; Yana Maolana Syah; Euis Holisotan Hakim
Molekul Vol 17 No 1 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.1.5603

Abstract

Gayo (Aceh) coffee is one of the best coffees from Indonesia. In this work, metabolites in the Gayo roasted arabica and robusta coffees were identified with 1H NMR spectroscopy analysis. Accumulatively 28 compounds were successfully detected, including the major and minor metabolites of the roasted coffee. Multivariate data analysis was applied to evaluate the dataset extracted from 1H NMR spectra of the coffee samples, result in the disclosure of the differences in the chemical profiles between the Gayo roasted coffees of arabica and robusta. Score plots obtained from the models of principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLSDA), classified the roasted coffee samples based on their species. Loading plot and S-plot revealed the discriminant compounds for each coffee. Gayo roasted arabica coffee was characterized with acetic acid and trigonelline, while the robusta coffee was discriminated with fatty acids. This report revealed the chemical differences of both coffees and confirmed the diversity of Gayo coffees.
Leucaena–Derived Biochar for Biodiesel Production Jutaporn Chanathaworn; Chokchai Yatongchai; Saluma Samanman
Molekul Vol 17 No 1 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.1.5604

Abstract

Giant leucaena wood was utilized to prepare heterogeneous catalysts through a fast pyrolysis method and chemical activation for transesterification. The obtained catalysts were investigated using SEM, CHNS/O analyzer, XRF and XRD. The influence of the concentration of KOH (3-9 M), catalyst amount (0.25-2.0 g), methanol to oil ratio (4:1-10:1), and reaction time (30-75 min) on FAME yield was also studied on transesterification reaction carried out at 60ºC under a 750 rpm stirring speed. The experiment results demonstrate that chemical activation was required to improve the porosity of the catalyst. The result showed that a well-developed porous structure was observed, as the concentration of KOH increased activated biochar become more porous. 7M-KOH for chemical activation was the best condition to obtain a porous catalyst. It was found that the main factors affecting the FAME yield were dependent on various parameters including methanol: oil ratio, catalyst loading, reaction time and stirring speed via transesterification process. The highest yield of 94.06% was achieved on 0.5g of the catalyst activated by 7M-KOH, a methanol:oil ratio of 6:1 and a 1-hour reaction. The obtained biodiesel mainly composed of different fatty acid in follow order C18:1 > C16:0 > C18:2 > C18:0. Properties reached the ASTM D6751-12 and EN 14214:2012 standard, indicating that leucaena-derived biochar is potentially utilized in biodiesel production.
Rubber (Hevea brasiliensis) Seed shell Activated Carbon Preparation, Characterization and Antibacterial Activity Studies
Molekul Vol 17 No 1 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.1.5605

Abstract

In Thailand, the rubber tree is widely used as a source of natural rubber and their seeds have been found to be rich in oil production. The seed shell is the residue and not edible but abundantly available in the country. Therefore, the objective of this work was to prepare activated carbon (AC) from rubber seed shells. ACs were produced by chemical activation and their characteristics were investigated. The effects of activation temperature and chemical impregnation time in the agent were examined. Proximate analysis was investigated and the results were within the standard of AC. The adsorption capacity was demonstrated with BET, iodine, and methylene blue number. The best produced AC (700 °C of activation temperature and 24 h of impregnation time) provided the highest BET surface area, iodine and methylene blue number were 923 m2/g, 1,234±24 mg/g and 1,204±10 mg/g, respectively. FT-IR spectrum indicates the presence of oxygen and nitrogen containing surface functional groups such as -OH, -CH3, -CH2, C=C, C-O, and N-H groups. The microstructure of the produced ACs was examined by SEM and the results found that they are porosity. The antibacterial effect results were discovered to be also effective against E. coli and S. aureus after 3 h and 24 h of contact times, respectively. In addition, the prepared AC also provided many properties that are better than those obtained by the commercial AC. Finally, it can be concluded that, AC from rubber seed shell can be applied as a low cost and possible alternate adsorbent.
The enrichment of silver ions in Ag3PO4 through the morphology changes and their photocatalytic activities Uyi Sulaeman; Khusnul Afifah; Hartiwi Diastuti; Shu Yin
Molekul Vol 17 No 1 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.1.5606

Abstract

The Ag3PO4 photocatalyst has been developed to degrade the organic pollutant due to its highly active responsive under visible light irradiation. The properties of Ag3PO4 may depend on design and preparation. Starting materials and co-precipitation conditions would significantly affect the properties of the product. The controlled defect of this photocatalyst may lead to improve catalytic activity. Here, the unique properties of phosphate deficiency in Ag3PO4 were created using the starting material of KH2PO4 and AgNO3 under a mixed solvent of water and ethanol. AgNO3 solution with the ethanol percentages of 0%, 25%, 50%, 75% and 90% was added to KH2PO4 aqueous solution. The photocatalysts were characterized using XRD, DRS, SEM, and XPS. The changes in morphology can be observed from the tetrahedral to the sphere which has smaller particles. The increased atomic ratio of Ag/P and Ag/O suggests that the silver ion enrichment in Ag3PO4 has been created. The activity of Ag3PO4 for Rhodamine B elimination increased by 4.3 times higher compared to that of the pristine Ag3PO4. The enhanced photocatalytic activity might be caused by the smaller particle size and higher silver ion content on the surface of Ag3PO4.
Easy Handling Preparation of Cubic Sulfur in Aqueous Extract of Sapindus rarak rinds Charles Banon; Nesbah Nesbah; Bambang Trihadi; Aswin Falahudin; Salprima Yudha S
Molekul Vol 17 No 3 (2022)
Publisher : Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20884/1.jm.2022.17.3.5719

Abstract

The aqueous extract of Sapindus rarak (S. rarak) was produced by heating its rinds in demineralized water at 80 °C. The main experiment was conducted at room temperature by mixing a solution of sodium thiosulfate with the extract obtained previously. After adding dilute hydrochloric acid (10%), fine granules gradually formed in the solution and precipitated when the reaction was stopped and allowed to stand for 24 h. The analysis results showed the consistency of the X-ray diffraction (XRD) peak of the obtained material with sulfur standards. When looked at the surface using scanning electron microscopy (SEM), sulfur was found to be cube-shaped. The formation of cuboidal elemental sulfur possibly occurs due to the covering of thiosulfate ions and elemental sulfur during and after the reaction. Organic compounds were found covering sulfur through elemental and functional group analyses using energy-dispersive X-ray (EDX) and Fourier-transform infrared (FTIR) spectroscopy, respectively

Page 3 of 22 | Total Record : 218