cover
Contact Name
Istadi
Contact Email
istadi@che.undip.ac.id
Phone
+6281316426342
Journal Mail Official
bcrec@live.undip.ac.id
Editorial Address
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
ISSN : -     EISSN : 19782993     DOI : https://doi.org/10.9767/bcrec
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science, and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on the general chemical engineering process are not covered and out of the scope of this journal. This journal encompasses Original Research Articles, Review Articles (only selected/invited authors), and Short Communications, including: fundamentals of catalyst and catalysis; materials and nano-materials for catalyst; chemistry of catalyst and catalysis; surface chemistry of catalyst; applied catalysis; applied bio-catalysis; applied chemical reaction engineering; catalyst regeneration; catalyst deactivation; photocatalyst and photocatalysis; electrocatalysis for fuel cell application; applied bio-reactor; membrane bioreactor; fundamentals of chemical reaction engineering; kinetics studies of chemical reaction engineering; chemical reactor design (not process parameter optimization); enzymatic catalytic reaction (not process parameter optimization); kinetic studies of enzymatic reaction (not process parameter optimization); the industrial practice of catalyst; the industrial practice of chemical reactor engineering; application of plasma technology in catalysis and chemical reactor; and advanced technology for chemical reactors design. However, articles concerned about the "General Chemical Engineering Process" are not covered and out of the scope of this journal.
Articles 803 Documents
Production of Butane from Methyl Ethyl Ketone over Pt/Al2O3 Zahraa Al-Auda; Keith L. Hohn
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16693

Abstract

Methyl ethyl ketone (MEK) was catalytically converted to butane directly in one step over platinum (Pt) supported on alumina (Al2O3). The reaction was performed in the gas phase in a fixed bed reactor. Conversion of MEK to butane was achieved by hydrogenation of MEK to 2-butanol, dehydration of 2-butanol to butene, and further hydrogenation of butene to butane. The results showed that butane can be produced with selectivity reaching 95% depending on the operating conditions. The highest selectivity for butane was obtained at 220 °C and a H2/MEK molar ratio of 15. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Lump Kinetic Analysis of Syngas Composition Effect on Fischer-Tropsch Synthesis over Cobalt and Cobalt-Rhenium Alumina Supported Catalyst Dewi Tristantini; Ricky Kristanda Suwignjo
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.11.1.424.84-92

Abstract

This study investigated lump kinetic analysis of Fischer-Tropsch synthesis over Cobalt and Cobalt-Rhenium Alumina supported catalyst (Co/γ-Al2O3 and Co-Re/γ-Al2O3) at 20 bars and 483 K using feed gas with molar H2/CO ratios of 1.0 to 2.1. Syngas with H2/CO molar ratio of 1.0 represents syngas characteristic derived from biomass, while the 2.1 molar ratio syngas derived from coal. Rhenium was used as the promoter for the cobalt catalyst. Isothermal Langmuir adsorption mechanism was used to build kinetic model. Existing kinetic model of Fischer-Tropsch synthesis over cobalt alumina supported catalysts only valid for operating pressure less than 10 bar. CO insertion mechanism with hydrogenation step of catalyst-adsorbed CO by catalyst-adsorbed H component as the rate-limiting step is valid for operating condition in this research. Higher H2/CO ratio makes faster hydrogenation step and less-product dominated in the associative CO adsorption step and dissociative H2 adsorption equilibrium step. Kinetic constant for hydrogenation step increases 73-421% in syngas with 2.1 H2/CO molar ratio compared to condition with 1.0 H2/CO molar ratio. Faster hydrogenation step (with higher kinetic constant) results in higher reactant conversion. Equilibrium constant for associative CO adsorption and dissociative H2 adsorption step decreases 53-94% and 13-82%, respectively, in syngas with higher H2/CO molar ratio. Less product dominated reactant adsorption step (lower equilibrium constant for CO and H2 adsorption step) gives higher CH4 product selectivity, which occurred on 2.1 molar ratio of syngas. Rhenium (Re) metal on cobalt catalyst with composition 0.05%Re-12%Co/γ-Al2O3 only gives effect as structural promoter, which only increases reactant conversion with the same product selectivity. 
Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst Raja Mohamad Hafriz Raja Shahruzzaman; Salmiaton Ali; Robiah Yunus; Taufiq Yap Yun-Hin
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.3.1956.489-501

Abstract

Malaysian Dolomite has shown potential deoxygenation catalyst due to high capacity in removing oxygen compound and produce high quality of biofuel with desirable lighter hydrocarbon (C8-C24). The performance of this catalyst was compared with several commercial catalysts in catalytic pyrolysis of Waste Cooking Oil. Calcination at 900 °C in N2 produced catalyst with very high activity due to decomposition of CaMg(CO3)2 phase and formation of MgO-CaO phase. The liquid product showed similar chemical composition of biofuel in the range of gasoline, kerosene and diesel fuel. Furthermore, Malaysian Dolomite showed high reactivity with 76.51 % in total liquid hydrocarbon and the ability to convert the oxygenated compounds into CO2, CO, CH4, H2, hydrocarbon fuel gas, and H2O. Moreover, low acid value (33 mg KOH/g) and low aromatic hydrocarbon content were obtained in the biofuel. Thus, local calcined carbonated material has a potential to act as catalyst in converting waste cooking oil into biofuel. 
Modification of Turen Bentonite with AlCl3 for Esterification of Palmitic Acid Abdullah Abdulloh; Siti Maryam; Nanik Siti Aminah; Triyono Triyono; Wega Trisunaryanti; Mudasir Mudasir; Didik Prasetyoko Didik Prasetyoko
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.1.5513.66-73

Abstract

Natural Turen bentonite has been modified and applied as catalyst for palmitic acid esterification. Modification of natural Turen bentonite was conducted by cation exchange method using AlCl3 solution. Catalyst characterization was performed on X-ray Fluoroscence, X-ray Diffraction, nitrogen adsorption-desorption and infrared spectroscopy techniques. The catalytic activity test in the esterification reaction of palmitic acid with methanol was conducted by bath at 65 °C with a variation of reaction time of 1, 2, 3, 4 and 5 h. Catalytic activity has been observed qualitatively using GC-MS and quantitatively by changes in acid number. The analysis showed the formation of Al3+-bentonite. Observation on the elements has shown that the presence of calcium decreased from 10.2% to 4.17%, with an increase of aluminium content from 9.9% to 13%. Diffraction line at 2θ 5.7379º became 5.6489º, along with changes in d-spacing of 15.3895 Å to 15.6319 Å. The surface area increased from 83.78 m2/g to 91.26 m2/g, while Brönsted acid sites increased from 10.2 µmol/g to 67.5 µmol/g and Lewis acid sites increased from 94.9 µmol/g to 132 µmol/g. Furthermore, Al3+-bentonite has showed as active catalyst in the esterification reaction of palmitic acid with palmitic acid with conversion of 78.78% for 5 h. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Zn-Mo/HZSM-5 Catalyst for Gasoil Range Hydrocarbon Production by Catalytic Hydrocracking of Ceiba pentandra oil Yustia Wulandari Mirzayanti; Firman Kurniawansyah; Danawati Hari Prayitno; Achmad Roesyadi
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.1.1508.136-143

Abstract

Biofuel from vegetable oil becomes one of the most suitable and logical alternatives to replace fossil fuel. The research focused on various metal ratio Zinc/Molybdenum/HZSM-5 (Zn-Mo/HZSM-5) catalyst to produce liquid hydrocarbon via catalytic hydrocracking of Ceiba penandra oil. The catalytic hydrocracking process has been applied in this study to crack Ceiba pentandra oil into a gasoil range hydrocarbon using Zn-Mo/HZSM-5 as a catalyst. The effect of various reaction temperature on the catalytic hydrocracking of Ceiba pentandra oil were studied. The Zn-Mo/HZSM-5 catalyst with metal ratio was prepared by incipient wetness impregnation method. This process used slurry pressure batch reactor with a mechanical stirrer. A series of experiments were carried out in the temperature range from 300-400 oC for 2 h at pressure between 10-15 bar. The conversion and selectivity were estimated. The liquid hydrocarbon product were identified to gasoline, kerosene, and gas oil. The results show that the use of Zn-Mo/HZSM-5 can produce gas oil as the most component in the product. Overall, the highest conversion and selectivity of gas oil range hydrocarbon was obtained when the ZnMo/HZSM-5 metal ratio was Zn(2.86 wt.%)-Mo(5.32 wt.%)/HZSM-5 and the name is Zn-Mo/HZSM-5_102. The highest conversion was obtained at 63.31 % and n-paraffin (gas oil range) selectivity was obtained at 90.75 % at a temperature of 400 oC. Ceiba pentandra oil can be recommended as the source of inedible vegetable oil to produce gasoil as an environmentally friendly transportation fuel. 
UV Irradiation and Ozone Treatment of κ-Carrageenan: Kinetics and Products Characteristics Aji Prasetyaningrum; Widayat Widayat; Bakti Jos; Yudhy Dharmawan; Ratnawati Ratnawati
Bulletin of Chemical Reaction Engineering & Catalysis 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.15.2.7047.319-330

Abstract

The low molecular weight (LMW) of sulfated polysaccharides including k-carrageenan, is shows a wide spectrum of biological activities. This research investigates the influence of UV irradiation, ozone (O3), and the combination of O3/UV methods on the depolymerization of k-carrageenan. The depolymerization kinetics of k-carrageenan using the Advanced Oxidation Process (UV/O3) was also studied. Furthermore, the intrinsic viscosity method was used to determine the average molecular weight of the research sample, and a mathematical model was developed to predict the kinetic rate constant, as a function of ozone dosage and UV irradiation intensity. Therefore, the physicochemical and morphological properties of the degraded k-carrageenan were analyzed by FT-IR, SEM, and XRD. The intrinsic viscosity k-carrageenan decreases with increasing UV light intensity and ozone concentration. The combination of UV/O3 treatment appeared to be more effective than the individual approaches, as the highest kinetic rate constant for depolymerization was 1.924×10-4 min-1, using 125 mg/L ozone concentration and 40 mW/cm2 of UV lamp intensity. This research also evaluated the relationship between various experimental conditions, including UV lamp power dissipation and ozone concentration on the reaction kinetics model, and the results suggest that lower effect is contributed by UV irradiation intensity. In addition, FT-IR spectra showed the absence of any significant change in the functional properties of k-carrageenan treated with UV and O3 processes, although the morphological properties of the LMW k-carrageenan were rougher and more porous than the native k-carrageenan. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Modelling Based Analysis and Optimization of Simultaneous Saccharification and Fermentation for the Production of Lignocellulosic-Based Xylitol Ibnu Maulana Hidayatullah; I G B N Makertihartha; Tjandra Setiadi; Made Tri Ari Penia Kresnowati
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.4.11807.857-868

Abstract

Simultaneous saccharification and fermentation (SSF) configuration offers efficient use of the reactor. In this configuration, both hydrolysis and fermentation processes are conducted simultaneously in a single bioreactor, and the overall processes may be accelerated. However, problems may arise if both processes have different optimum conditions, and therefore process optimization is required. This paper presents a mathematical model over SSF strategy implementation for producing xylitol from the hemicellulose component of lignocellulosic materials. The model comprises the hydrolysis of hemicellulose and the fermentation of hydrolysate into xylitol. The model was simulated for various process temperatures, prior hydrolysis time, and inoculum concentration. Simulation of the developed kinetics model shows that the optimum SSF temperature is 36 °C, whereas conducting prior hydrolysis at its optimum hydrolysis temperature will further shorten the processing time and increase the xylitol productivity. On the other hand, increasing the inoculum size will shorten the processing time further. For an initial xylan concentration of 100 g/L, the best condition is obtained by performing 21-hour prior hydrolysis at 60 °C, followed by SSF at 36 °C by adding 2.0 g/L inoculum, giving 46.27 g/L xylitol within 77 hours of total processing time. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
The Optical Properties and Photo catalytic Activity of ZnS-TiO2/Graphite Under Ultra Violet and Visible Light Radiation Fitria Rahmawati; Rini Wulandari; Irvina M. Murni; Moedjijono Moedjijono
Bulletin of Chemical Reaction Engineering & Catalysis 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.10.3.8598.294-303

Abstract

This paper discuss research about the optical properties and photo catalytic activity of TiO2 film on graphite substrate and its modification with ZnS. The optical properties investigated are the light response at various light wavelength and the gap energy (Eg). Meanwhile, the photocatalytic activity was studied from isopropanol degradation to determine the Quantum Yield, QY and kinetics of reaction. The results show that the TiO2 layer is consisted of rutile and anatase phases. Meanwhile, the ZnS peaks are at 2θ of 27.91o and 54.58o. The gap energy of TiO2/G consist of two band gap representing the band gap of rutile and anatase. The ZnS deposition shifted the band gap into single gap of 3.40 eV which is in between the gap energy of single TiO2 and single ZnS. The isopropanol degradation with TiO2/G photocatalyst under visible light radiation did not produce any new peaks representing product. Meanwhile, the photocatalytic process under 380 nm light produce new peaks representing the electronic transition of acetone. The isopropanol degradation with ZnS-TiO2/Graphite produced new peaks that indicates the photocataytic activity of ZnS-TiO2/Graphite whether under UV or visible light radiation. The siginificant role of ZnS also proven by the increase of QY values and the increase of rate constant, k. Copyright © 2015 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Sustainable Catalytic Process for Synthesis of Triethyl Citrate Plasticizer over Phosphonated USY Zeolite Kakasaheb Y. Nandiwaleand; Vijay V. Bokade
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.11.3.569.292-298

Abstract

Fruits wastage is harmful to health and environment concerning spreading diseases and soil pollution, respectively. To avoid this issue, use of citrus fruit waste for the production of citric acid (CA) is one of viable mean to obtain value added chemicals. Moreover, synthesis of triethyl citrate (TEC), a non-toxic plasticizer by esterification of CA with ethanol over heterogeneous catalyst would be renewable and sustainable catalytic process. In this context, parent Ultrastable Y (USY) and different percentage phosphonated USY (P-USY) zeolites were used for the synthesis of TEC in a closed batch reactor, for the first time. The synthesized catalysts were characterized by N2-adsorption desorption isotherm, powder X-ray diffraction (XRD) and NH3 temperature programmed desorption (TPD. Effect of reaction conditions, such as the molar ratio of ethanol to CA (5:1 - 20:1), the catalyst to CA ratio (0.05 - 0.25) and reaction temperature (363-403 K), were studied in view to maximizing CA conversion and TEC yield. Phosphonated USY catalysts were found to be superior in activity (CA conversion and TEC yield) than parent USY, which is attributed to the increased in total acidity with phosphonation. Among the studied catalysts, the P2USY (2% phosphorous loaded on USY) was found to be an optimum catalyst with 99% CA conversion and 82% TEC yield, which is higher than the reported values. This study opens new avenues of research demonstrating principles of green chemistry such as easy separable and reusable catalyst, non-toxic product, bio-renewable synthetic route, milder operating parameters and waste minimization. 
Egg-shell Treated Oil Palm Fronds (EG-OPF) as Low-Cost Adsorbent for Methylene Blue Removal Rosalyza Hasan; Nur Aida Farihin Ahliyasah; Chi Cheng Chong; Rohayu Jusoh; Herma Dina Setiabudi
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.1.3322.158-164

Abstract

A new adsorbent (egg-shell treated oil palm fronds (EG-OPF)) prepared from wastes was evaluated for methylene blue (MB) removal. Optimization among three significant variables (initial concentration (X1), initial pH (X2), and adsorbent dosage (X3)) were executed using response surface methodology (RSM). The most excellent performance was marked at X1 = 291.7 mg/L, X2 = pH 5, and X3 = 1.82 g/L, with MB removal of 80.26 %. The kinetic study was fitted perfectly with the pseudo-second-order model (R2 > 0.990), indicating the chemisorption process. The isotherm study was found to follow the Langmuir isotherm model (R2 = 0.999), with maximal adsorption magnitude of 714.3 mg/g, implying the monolayer adsorption on a homogenous adsorbent surface. The reusability study affirmed the feasibility of EG-OPF in MB removal, credited to its excellent performance during reusability studies. The present study successfully discovered a new low-cost adsorbent (EG-OPF) for MB removal. 

Filter by Year

2007 2026


Filter By Issues
All Issue 2026: BCREC Volume 21 Issue 1 Year 2026 (April 2026) (Issue in Progress) 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025) 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025) 2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025) 2025: BCREC Volume 20 Issue 1 Year 2025 (April 2025) 2025: Just Accepted Manuscript and Article In Press 2025 2024: BCREC Volume 19 Issue 4 Year 2024 (December 2024) 2024: BCREC Volume 19 Issue 3 Year 2024 (October 2024) 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024) 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024) 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023) 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023) 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023) 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023) 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022) 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022) 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022) 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022) 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021) 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021) 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021) 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021) 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020) 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020) 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020) 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019) 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019) 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019) 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018) 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018) 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018) 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017) 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017) 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017) 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016) 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016) 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016) 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015) 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015) 2015: BCREC Volume 10 Issue 1 Year 2015 (April 2015) 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014) 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014) 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014) 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013) 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013) 2013: BCREC Volume 7 Issue 3 Year 2013 (March 2013) 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012) 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012) 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011) 2011: BCREC Volume 6 Issue 1 Year 2011 (June 2011) 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010) 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010) 2009: BCREC Volume 4 Issue 2 Year 2009 (December 2009) 2009: BCREC Volume 4 Issue 1 Year 2009 (June 2009) 2008: BCREC Volume 3 Issue 1-3 Year 2008 (December 2008) 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007) 2007: BCREC: Volume 2 Issue 1 Year 2007 (June 2007) More Issue