Jurnal Rekayasa Proses
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles
273 Documents
Pembuatan resin phenol formaldehyde sebagai prekursor untuk preparasi karbon berpori: pengaruh jenis turunan phenol terhadap karakteristik resin dan karbon
Nuryati Nuryati;
Imam Prasetyo
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1896
Phenolic resin is the product of polycondensation between phenol (P) with formaldehyde (F). This research aims to study synthesis of phenol formaldehyde resin modified by adding the reactant in the form of phenol derivatives, such as tertiary butyl phenol (T), resorcinol (R) and hydroquinone (H). The product is applied as precursor for making porous carbon. Reaction of phenol formaldehyde was carried out in a stirred reactor at temperature of 90oC for 1 to 3 hours. KOH was used as catalyst. Para Toluene Sulfonic Acid (pTSA) was added to the resin as a cross linking catalyst. Carbonization process was carried out by pyrolysis at the temperature of 800oC for 1 hour. The results showed that PF and PFT resins had high density of 1.18g/cm3 . PF resin had the hardness value of 17.2 g/mm2 . The iodine number of the PF and PFT carbon was 862.3 mg/g and 794.16 mg/g, respectively. The surface area of the PF and PFT carbons were 836.7m2 /g and 702.7m2 /g, respectively.
Analisis eksperimental fluks kalor pada celah sempit anulus berdasarkan variasi suhu air pendingin menggunakan bagian uji HeaTiNG-01
Bambang Riyono;
Indarto Indarto;
Sinta Tri Habsari;
Mulya Juarsa;
Kiswanta Kiswanta;
Ainur R.;
Edy S.;
Joko P. W.;
Ismu H.
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1895
Experiment to investigate the mechanism of boiling heat transfer in a narrow gap on severe accident scenarios of TMI-2 nuclear power plant is necessary to develop the understanding of the related accident management.The present study aimed to obtain heat flux value and critical heat flux (CHF) during boiling heat transfer process in a narrow gap of annulus. The study was experimentally carried out using the HeaTiNG 01 test with water as cooling fluid which temperature was varied at 75°C, 85°C dan 95°C. The rod was heated to 650°C. The boiling process during cooling was investigated by recording the transient temperature of the heated rod. The data was used to calculate the heat flux and wall superheat which results were represented in a boiling curve. The experimental results showed that the CHF value of the cooling media at 75°C was lower compared with that of at 85°C and 95°C. It was found that the values of CHF at 85°C and 95°C were close. The maximum CHF value at 75°C was 230 kW/m2 , while at 95°C was 282 kW/m2 . The CHF values at various position of heated rod was found to follow polynomial correlation. By comparing the boiling film areas from experimental results with that of Bromley correlation, it was concluded that boiling process in a narrow gap could not categorized as pool boiling process
Performa sistem autocascade dengan menggunakan karbondioksida sebagai refrigeran campuran
Nasruddin Nasruddin;
Ardi Yuliono;
Darwin Rio Budi Syaka
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1894
Most refrigeration systems today use refrigerant which causes ozone depletion or global warming. Therefore, alternative natural refrigerants are highly required. One potential candidate is CO2. However, high pressure of CO2 limits its application in conventional refrigeration system. To solve this problem, a low investment cost of autocascade refrigeration system is used. This research investigated autocascade refrigeration system using a mixture of CO2 (R744) and R12, in comparison with environmentally friendly refrigerant mixture of CO2 (R744) and R600a. The parameters analyzed were (1) evaporation temperature, (2) condensation temperature, (3) suction temperature, (4) discharge temperature, (5) suction pressure, and (5) discharge pressure. The experiment results showed that an increase of CO2 concentration by 10% or more in the autocascade refrigeration system could raise system pressure. Therefore, the increase of CO2 pressure should be within the allowable limit of the working pressure of the compressor.
Studi eksperimental pengendalian korosi pada aluminium 2024-T3 di lingkungan air laut melalui penambahan inhibitor kalium kromat (K2CrO4)
Waris Wibowo;
Mochammad Noer Ilman
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1893
Aluminium alloy 2024-T3 is widely used in manufacturing industries such as aircraft, automotive and ship industries due to its light weight and good mechanical properties. However, aluminium alloy 2024-T3 is suffered from corrosion attack when it is operated in corrosive environment such as sea water. One of the corrosion control methods is inhibitor addition. The present investigation aimed to study the effect of K2CrO4 inhibitor on controlling corrosion rate in sea water. In this research, K2CrO4 was added to sea water environment with various concentrations, i.e. 0.1, 0.3 and 0.5%. Subsequently corrosion rates were measured using three-electrode potential technique with saturated calomel (Hg2Cl2) electrode as a reference electrode whereas the auxiliary electrode was platinum (Pt). Additional experiments including compositional analysis, microstructural examination, hardness measurement and tensile test were also carried out to gain better understanding to the mechanism in which corrosion attacks aluminium alloy 2024-T3. Experimental results showed that corrosion rate of aluminium alloy 2024-T3 in sea water without inhibitor is around 0.0216 mm/year. The additions of K2CrO4 inhibitor tended to reduce the corrosion rate until a minimum value was obtained, typically 0.0134 mm/year (or 38% decrease) as the amount of K2CrO4 was 0.5%. The type of corrosion observed in this investigation was pitting corrosion as a result of local damage in passive film. Inhibitor seemed to form thin protective film on metal surface hence reducing corrosion rate.
Kinetika reaksi alkyd resin termodifikasi minyak jagung dengan asam phtalat anhidrat
Heri Heriyanto;
Rochmadi Rochmadi;
Arief Budiman
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1892
Esterification of phthalic anhydrate with monoglyceride is a condensation reaction to form a linear chain polymer. The present work aimed at investigating reaction kinetics of alkyd resin modified with corn oil in the absence of catalyst. The work consisted of two steps i.e. alcoholysis and esterification. In the alcoholysis step, corn oil and glycerol were brought into reaction with a molar ratio of 1:2 at 250°C. Every 30 minutes during 3 hour reaction, reaction products were sampled to analyse the remaining free glycerol by iodometry method (FBI-AO2-03). In the esterification step, phthalic anhydrate was put in the batch reactor with a glycerol-phthalic anhydrate molar of 3:2. Samples were taken and the hydroxyl ions were analysed by acetate anhydrate method. The variables investigated in the present work were reaction temperatures varied from 230°C to 260°C and equivalent OH/COOH ratio from 1 to 1.25. Experimental results showed that alcoholysis of corn oil and glycerol could be carried out in a temperature range of 230°C to 260°C without the presence of catalyst. The effect of temperature on the reaction rate constant of monoglyceride and phthalic ester formation could be respectively written in the Arrhenius correlations as follows: k1 = 1.4647.104 exp (− 8237.7/???? ) g/mgeq.min k4 = 2.1398.109 exp (− 14142/???? ) g/mgeq.min
Kinetika reaksi esterifikasi gliserol dengan asam asetat menggunakan katalisator indion 225 Na
Nuryoto Nuryoto;
Hary Sulistyo;
Suprihastuti Sri Rahayu;
Sutijan Sutijan
Jurnal Rekayasa Proses Vol 5 No 2 (2011): Volume 5, Number 2, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1897
Biodiesel is an environmentally friendly alternative fuel. The increase of biodiesel production is followed by the increase of the glycerol as by product. Therefore, conversion of glycerol into other products to increase its economic value should be done such as converting it to triacetin. Triacetin is a product from a reaction between glycerol and acetic acid. The use of solid catalysts such as ion exchange resin 225 Indion Na is an alternative method to ease product separation. Preparation of triacetin was conducted in a batch reactor with a stirring speed of 1000 rpm, at temperature of 333 K – 373 K, catalyst diameter of 0.085 cm, the reactant ratio of 7 gmol acetic acid / gmol glycerol, and catalyst concentration of 3% to weight of acetic acid. The sample was taken every 15 minutes in a reaction time of 90 minutes then was analized for free acid concentration. Total acid, free acid, and total glycerol were also determined by volumetric method at the early stage of reaction. The results showed that the highest conversion as high as 41.7% was achieved at 373 K. It was found that the reaction rate was the controlling step. The effect of temperature to rate of reaction constants in the temperature range of 333 K – 373 K can be expressed as follows:kr = 3.344 x 100000 exp (-7,955.56/T ) (1/s)
Proses produksi biodiesel berbasis biji karet
Soemargono Soemargono;
Edy Mulyadi
Jurnal Rekayasa Proses Vol 5 No 2 (2011): Volume 5, Number 2, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1898
Biodiesel consists of various fatty acid esters which come from vegetable oil. More than 30 types of plants in Indonesia are potential to produce vegetable oils. One of the vegetable oils came from rubber seed. Therefore, utilization of rubber seed (Hevea Brasiliensis), as raw material for biodiesel was the precise breakthrough to add value to rubber plantation. This research aimed to determine the pattern of collection of oil of rubber seed maximally and to obtain the condition of production process of biodiesel fulfilling standard of SNI and ASTM. Biodiesel production was done in the prototype with a capacity of 20 liter/hour. The esterification process was conducted at 105°C using 10% methanol and acid catalyst for 90 minutes. Trans-esterification process was performed in an oscillating flow reactor with a catalyst dose of 1% oil weight and methanol as much as 15% oil weight. The effect of temperature and reaction time on product yield and quality were investigated. Purification of biodiesel was done in a vacuum system. Results from the present study showed that the yield of kernel through the process was up to 53% of the rubber seed weight. Meanwhile, the amount of oil could be extracted from the kernel was up to 56% of the kernel weight. The characteristic of biodiesel resulted from the process was in accord with that of the standard oil; density of 0.8565 g/ml, acid value 0.49, iodine value 62.88, ester fraction 97.2%, flash point 178C, heat of combustion 16,183 J/g.
Produksi asam lemak dari dedak melalui proses hidrolisis enzimatis secara in situ
Indah Hartati;
Fahmi Arifan;
Mohammad Endy Yulianto
Jurnal Rekayasa Proses Vol 5 No 2 (2011): Volume 5, Number 2, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1899
Indonesia has potential to produce fatty acid from rice bran which is abundantly available as a side product of rice field activities. Rice bran contains lipase enzyme which is a catalyst for hydrolysis of triglycerides largely found in rice bran. The present work aimed to investigate the hydrolysis process of triglyceride from rice bran by activated lipase enzyme. Effect of the presence of phosphate compounds as buffer on fatty acid production was studied. The amount of fatty acid produced during hydrolysis with the use of buffer was compared to that without buffer. The parameters studied in the present work were volume of buffer (0% to 25% of water volume), rice bran-water ratio (1:1 to 1:6 w/v) and reaction temperature (30°C – 50°C). Experimental results showed that ions in the buffer solution could increase the activity and stability of lipase enzyme. The addition of buffer was found to increase fatty acid yield up to 48%. The highest fatty acid results ware obtained at the operation condition at which buffer volume of 5%, reaction temperature of 50°C and rice bran-water ratio of 1:5 where the acid number was 2.63 mgek NaOH/g rice bran.
Pembuatan resin fenol formaldehid sebagai prekursor untuk preparasi karbon berpori: Pengaruh turunan phenol dan pH terhadap karakteristik resin dan karbon
Mamik Mardyaningsih;
Rochmadi Rochmadi
Jurnal Rekayasa Proses Vol 5 No 2 (2011): Volume 5, Number 2, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1900
Phenol formaldehyde resin can be modified by adding phenol derivates, such as tertiary butylphenol (TBP), hydroquinone (HQ), and p-amino phenol (AP). This research aimed at studying the effect of phenol derivates and pH on the resin characteristic and porous carbon. Polymerization was carried out in a three-neck flask, equipped with a magnetic stirrer, heating jacket and thermometer in a base condition, at 90°C and 1 to 3 hours reaction time. The resin was then cooled and neutralized. The curing process was carried out where resin was added by pTSA and then stirred to reach homogeneous condition. The resin was then heated at 150°C for ± 10 minutes. The carbonization process was conducted by pyrolizing the phenolic resin at 800°C for 1 hour. The result showed that the optimum condition of phenol formaldehyde reaction was at pH 8. Resin product that had optimum physical properties was PFTBP resin. It had a density of 1.18 g/cm3 and hardness value of 17.2 g/mm2. Among the phenolic resin materials produced, the PF carbon showed the highest product quality, indicated by high BET surface area of 836.7 m2/g and high iodine number of 862.3 mg/g.
Bottom ash limbah batubara sebagai media filter yang efektif pada pengolahan limbah cair tekstil
Ainur Rosyida
Jurnal Rekayasa Proses Vol 5 No 2 (2011): Volume 5, Number 2, 2011
Publisher : Jurnal Rekayasa Proses
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.22146/jrekpros.1901
Wastewater from textile industry contains very high contaminants. Therefore, a suitable treatment method is highly required to fulfill wastewater quality standard. Filtration is a step in wastewater treatment which affects duration of the whole process. By filtration, organic materials, solid particles and heavy metals can be significantly reduced. As a result, the load for biological process (activated sludge) decreases very much. The objective of this research is to obtain the most effective filtration medium for wastewater treatment from textile industry. Performance of three filter media (activated carbon, activated zeolite and coal bottom ash) were compared. The experiment was started by doing a preliminary process (stabilization, flotation, coagulation- sedimentation) to separate big size particles from wastewater before filtration. Then, the filtration medium was placed in a filtration column and a stream of wastewater was flown through the column at a certain flow rate. In order to better understand the effectiveness of medium, a sample of wastewater before and after filtration was measured for TSS, BOD, COD values and heavy metal (Cr) content. The experimental result showed that filtration using coal bottom ash was more effective than that using activated zeolite and activated carbon. The filtration was able to reduce TSS by 32,5%, COD by 54,1%, BOD by 58,9% and heavy metal (Cr) content 80,8%. Thus, coal bottom ash could be utilized as an effective filtration medium in the treatment of textile industry wastewater.