cover
Contact Name
Resti Nurmala Dewi
Contact Email
restinurmaladewi@gmail.com
Phone
+6281360927917
Journal Mail Official
rkl@che.usk.ac.id
Editorial Address
Jurusan Teknik Kimia Universitas Syiah Kuala, Jl. Tgk. Syech Abdur Rauf No.7, Kopelma Darussalam, Banda Aceh, INDONESIA
Location
Kab. aceh besar,
Aceh
INDONESIA
JURNAL REKAYASA KIMIA & LINGKUNGAN
ISSN : 14125064     EISSN : 23561661     DOI : https://doi.org/10.23955/rkl.v18i2.34018
The Journal of Chemical Engineering and Environment is an open access journal that publishes papers on chemical engineering and environmental engineering. The following topics are included in these sciences: Food and biochemical engineering Catalytic reaction engineering Clean energy technology Environmental and safety technology Fundamentals of chemical engineering and applied industrial engineering Industrial chemical engineering Material science engineering Process and control engineering Polymer and petrochemical technology Membrane technology Agro-industrial technology Separation and purification technology Environmental modelling Environmental and information sciences Water and waste water treatment and management Material flow analysis Mechanisms of clean development
Articles 319 Documents
Sintesis ZSM-5 dari Fly Ash Sawit Sebagai Sumber Silika dengan Variasi Nisbah Molar Si/Al dan Temperatur Sintesis Zahrina, Ida; Yelmida, Yelmida; Akbar, Fajril
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 2 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Palm fly ash is biomass/waste in the palm oil industry. Palm fly ash has high content of amorphous silica. ZSM-5 is one of synthetic zeolite which is widely used as catalyst in industries. ZSM-5 has high activity and selectivity to several hydrocarbon conversion reaction. Hence, ZSM-5 is being investigated for the conversion of vegetable oil to hydrocarbon. It can be synthesized from silica and alumina. Sources of silica that can be added to the ZSM-5 synthesis, are sodium silicate, hydrated silica, water glass sol silica, gelled silica, clay, precipitated silicaand calcined silica. ZSM-5 was synthesized free-template by using palm fly ash as silica source. In this research synthesis of ZSM-5 was carried out in autoclave at 18 hours and Na2O/Al2O3 molar ratio by various molar ratio from 30 to 40 and temperature in the range of 150 to 190 oC. The product was then analized using FTIR method. The best ZSM-5 product was obtained at Si/Al molar ratio of 40 and process temperature of 150 oC. Keywords: FTIR, Palm fly ash, ZSM-5
Modeling and Simulation on NOx and N2O Formation in Co-combustion of Low-rank Coal and Palm Kernel Shell Mahidin, Mahidin; Gani, Asri; Khairil, Khairil
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 2 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

NOx and N2O emissions from coal combustion are claimed as the major contributors for the acid rain, photochemical smog, green house and ozone depletion problems. Based on the facts, study on those emissions formation is interest topic in the combustion area. In this paper, theoretical study by modeling and simulation on NOx and N2O formation in co-combustion of low-rank coal and palm kernel shell has been done. Combustion model was developed by using the principle of chemical-reaction equilibrium. Simulation on the model in order to evaluate the composition of the flue gas was performed by minimization the Gibbs free energy. The results showed that by introduced of biomass in coal combustion can reduce the NOx concentration in considerably level. Maximum NO level in co-combustion of low-rank coal and palm kernel shell with fuel composition 1:1 is 2,350 ppm, low enough compared to single low-rank coal combustion up to 3,150 ppm. Moreover, N2O is less than 0.25 ppm in all cases.Keywords: low-rank coal, N2O emission, NOx emission, palm kernel shell
Penggunaan Microsoft Excel dalam Memprediksi Aliran Fluida dalam Packed Bed Hidayati, Hidayati; Supardan, Muhammad Dani
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 2 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Flow distribution is often a problem in the operation of the packed bed reactor. The problem is often referred as flow maldistribution and formation of localized hot spot region. This research is generally aimed to predict fluid flow distribution in the packed bed containing porous media by finite difference method using the software MS. Excel. Model verification result shows conformity between analytic method and result of calculation. Simple study of the finite difference method using the software MS. Excel can describe the fluid velocity profile in a packed bed containing porous media. This profile is similar with experiment of Kufner and Hofmann (1990) and Stephenson and Stewart (1986). The simulation was performed to determine the effect of process variables on the fluid flow velocity profile. Particle diameter influences fluid flow velocity. Bulk porosity also influences fluid flow velocity at axis up to certain distance from wall of reactor. Keywords: finite difference method, flow distribution, packed bed reactor
Studi Analisis Serbuk dengan Teknik Krim Silikon Menggunakan Plasma Tekanan Tinggi yang Diinduksi oleh Laser Nd: YAG Madjid, Syahrun Nur
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 2 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Laser-Induced Breakdown Spectroscopy (LIBS) is a technique that used for quantitative elemental analysis of various samples in different forms. In this technique, a laser light is focused on the surface of sample yielding a plasma just above the sample surface that used for analytical source. Nowadays, rapid powder analysis in tiny amount (mg) has been carried out using plasma induced by high power laser of Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet) at atmospheric pressure. However, powder analysis using high power laser is still difficult to be carried out due to blow of powder when irradiated laser beam focused on a powder sample. In general, the powder must be transformed into pellet form prior to analysis. Pellet sample requires a lot of powder and it takes time for preparation. In this study, we developed a technique of powder sample with its size about 30 m ( 5 mg) that mixed with silicon grease ( 5 mg) that act as a binder. The mixed sample then thinly painted on the metal plate as sub-target. The study showed that by employing sillicon grease technique, a semiquantitative analysis of several elements contain in coal, rock, and water can be conducted. Meanwhile heavy metal in soils is still not able to detect. This results showed that sillicon grease technique using Nd:YAG laser can be applied for rapid semi-quantitative analysis of powder samples available only in tiny amounts.Keywords: high pressured plasma, Nd:YAG laser, powder analysis, silicon grease technique
Konsep Dasar Proses Pembuatan Membran Berpori dengan Metode Non-Solvent Induced Phase Separation - Penentuan cloud point dan diagram tiga phasa Arahman, Nasrul
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 2 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Application of membrane technology for separation processes has been an efficient optional to produce a high quality of separation product. This process has been widely using in many field of industry. Therefore, knowledge of this membrane preparation is important for controlling the pore size of resulted membrane. This paper explained the basic concept of membrane preparation via non-solvent induced phase separation (NIPS) process by immersion precipitation. The effect of concentration of polyethersufone on the formation of cloud point of dope solution in N-methylpirrolidone was investigated. Two kinds of non-solvent as water and ethanol were used in order to study phase separation mechanism of polymer solution. Base on the amount of non-solvent of water and ethanol needed for cloud point formation, the ternary phase diagram can be performed. The experimental result indicated constant concentration of polyethersulfone, amount of ethanol needed was higher than water to obtain cloud point formation of polymer solution.Keywords: cloud point of polymer solution, immersion precipitation, membrane preparation
Hidrolisis Pati Sukun dengan Katalisator H2SO4 untuk Pembuatan Perekat Lubis, Mirna Rahmah
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 2 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Breadfruit starch is a unique resource which benefits for raw material of adhesive making. This study investigates hydrolysis method of breadfruit starch into dextrin with Sulphate Acid (H2SO4) catalysator. Dextrin hydrolysis is carry out in order to produce high dextrin percentage by subtracting the total glucose with free glucose. This study evaluates composition change because of breadfruit starch in various time and temperature. Optimum dextrin percentage is obtained at hydrolysis temperature of 100C, hydrolysis time 10 minutes, and 0.5 N H2SO4 concentration, with dextrin percentage of 77.12%. Furthermore, dextrin obtained is added by casein, cold water, triethanolamine, and water in order to form adhesive. The reserch result showed that the shear strength of the dextrin glue is 14 kg/cm2 which is larger than that of glue of Fox brands sold in the market that is only 12.48 kg/cm2. Because there is previous study regarding starch hydrolysis from breadfruit by using chloride acid catalysator, then data in this research show the influence of the sulphate acid usage as catalysator of adhesive. Based on the comparison, it seems that for breadfruit starch hydrolyzed at 100oC for 10 minutes, dextrin produced is less than that obtained by using chloride acid catalysator. The less dextrin percentage from breadfruit starch is caused by not all hydro sulphate ions are dissociated while mixing with starch. The mass balance is necessary to be completed including analysis of the breadfruit starch composition after hydrolysis to determine whether the starch has been degraded or not.Keywords: adhesive, dextrin, hydrolysis, shear strength
The Phenomena of Spreading of Hydrotalcite Sol on A Porous Silica Surface Governed by Marangoni Effect Helwani, Z.; Aziz, N.; Shamsudin, I. K.; Othman, M. R.
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 2 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Wetting phenomena plays a crucial role in a wide range of technological applications. Spreading of liquids on solids involving phase change is encountered in many areas ranging from biological systems to industrial applications such as coatings, printing, painting and spraying. The fundamental study on wetting of membrane precursors namely hydrotalcite sols on a porous silica surface with different types of precursor material was successfully carried out. Relationship between the contact angle of a hydrotalcite droplet on silica surface and the Marangoni effect was also investigated. The presence of PVA in hydrotalcite sols was found to influence the rheological properties of the sols significantly, resulting in higher viscosity and ultimately leading to lower contact angle on solid surfaces. The degree of hydrotalcite's philicity on a substrate was improved by the addition of PVA solution. In this study, the spreading of a liquid droplet on a solid surface controlled by a surface tension gradient, due to Marangoni effect was found to drive better spreading of the liquid droplet. Marangoni Number, Ma was found to be proportionally related with the surface tension of the sols but inversely proportional to contact angles of the sols. Marangoni forces that decreased the contact angle, promoted spreading of hydrotalcite droplets on the selected glass substrates.Keywords: contact angle, hydrotalcite, marangoni effect, spreading, wetting evolution
Produksi Hidrogen Secara Fotokalitik dari Air Murni Pada Katalis NaTaO3 Husin, Husni
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 2 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Study of hydrogen production as a green energy on NaTaO3 photocatalyst has been done. The aim of this work is to study the photocatalytic properties of NaTaO3 and NiO incorporated NaTaO3 used in water splitting reaction. The NaTaO3 powder with high crystallinity has been synthesized by a H2O2-asissted sol-gel route calcined at a temperature of 900 oC. NiO as a cocatalyst is deposited by impregnation of Ni(NO3)2.6H2O solution. The catalysts are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and diffuse reflectance UV-Vis (DR-UV-Vis). The photocatalysts have a band gap energy ca. 4.01 and 4.00 eV (corresponding to absorption edge of 310 and 311 nm). Photocatalytic activity towards hydrogen generation from water is investigated using a glass reactor under ultra violet (UV) light illumination. Photocatalytic of H2 and O2 production on the pristine NaTaO3 are 0.61 and 0.30 mmol g-1 cat.h-1, respectively. The activities are greatly enhanced 8.5 times higher by the incorporation of NiO as cocatalysts on the prepared oxides. NiO is found to give rise to more efficient photocatalytic activity for hydrogen evolution. The NaTaO3 nanoparticles produces using this facile have: better crystallinity, smaller size, and higher photocatalytic activity.Keywords: Sodium tantalum oxide; Nickel oxide; Sol-gel; impregnation; Hydrogen evolution
Perengkahan PFAD (Palm Fatty Acid Distillate) Dengan Katalis Zeolit Sintesis Untuk Menghasilkan Biofuel Yelmida, Yelmida; Zahrina, Ida; Akbar, Fajril
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 1 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Palm Fatty Acid Distillate (PFAD) is a by-product of the manufacture of cooking oil. The PFAD has a high potential to be used as raw material for biofuel by catalytic cracking because it is a long-chain hydrocarbon. This research aims to study the influence of time and temperature conversion reaction to catalytic cracking reaction using zeolite catalyst synthesis. The PFAD cracking was taken place in a batch stirred tank reactor at the temperature of 240, 260, 280, 300oC for 60, 80, 100, 120 minutes. The changes in functional groups of cracking products were analyzed using FTIR (Fourier Transform Infra Red), while the analysis of components contained in the product was conducted using GCMS (Gas Chromatography Mass Spectra) analysis. The highest reaction conversion result (98.7%) was obtained at a temperature of 280oC and the reaction time of 100 minutes. The cracking process did not produce biofuels, but the compounds formed were in the form of tridecanoic acid (C13H26NO2), Cholest-8-en-3-ol (C28H48O) and methyl vinyl ketone (C4H6O).Keywords: FTIR, GCMS, PFAD, zeolite synthesys
Pengaruh Kondisi Operasi Alat Pengering Semprot Terhadap Kualitas Susu Bubuk Jagung Zuhra, Zuhra; Sofyana, Sofyana; Erlina, Cut
Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 1 (2012): Jurnal Rekayasa Kimia & Lingkungan
Publisher : Chemical Engineering Department, Syiah Kuala University, Banda Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Drying method is one of techniques used in food preservation. This method usually means reducing water content which is the best contiditon for microorganism growth. Higher water content also causes some enzyms needed for food decomposition cannot work well. This research aims to produce corn milk powder and to study some variables effecting on quality of corn milk powder. Hopefully the results can provide some information and produce good quality of corn milk powder. The drying process was carried out with batch process where the material was put into spray dryer and the process was allowed for the given period of time. Heat was added by direct contact to the material. The pressures of the chamber were 2, 4, 6 and 8 bars and the temperatures were 100, 150, 200 and 250oC. The best results of the research of protein, fat and water contents were 25.86 %, 18.34%, and 6.14%, recpectively.Keywords: atomizer pressure, cornmilk powder, spray dryer, temperature

Filter by Year

2006 2025


Filter By Issues
All Issue Vol 20, No 2 (2025): Jurnal Rekayasa Kimia & Lingkungan (December, 2025) In Press Vol 20, No 1 (2025): Jurnal Rekayasa Kimia & Lingkungan (June, 2025) Vol 19, No 2 (2024): Jurnal Rekayasa Kimia dan Lingkungan (December, 2024) Vol 19, No 2 (2024): Jurnal Rekayasa Kimia & Lingkungan (December, 2024) Vol 19, No 1 (2024): Jurnal Rekayasa Kimia & Lingkungan (June 2024 ) Vol 18, No 2 (2023): Jurnal Rekayasa Kimia & Lingkungan (December, 2023 ) Vol 18, No 1 (2023): Jurnal Rekayasa Kimia & Lingkungan (June, 2023 ) Vol 17, No 2 (2022): Jurnal Rekayasa Kimia & Lingkungan (December, 2022) Vol 17, No 1 (2022): Jurnal Rekayasa Kimia & Lingkungan (June, 2022) Vol 16, No 2 (2021): Jurnal Rekayasa Kimia & Lingkungan (December, 2021) Vol 16, No 1 (2021): Jurnal Rekayasa Kimia & Lingkungan (June, 2021) Vol 15, No 2 (2020): Jurnal Rekayasa Kimia & Lingkungan (December, 2020) Vol 15, No 1 (2020): Jurnal Rekayasa Kimia & Lingkungan (June, 2020) Vol 14, No 2 (2019): Jurnal Rekayasa Kimia & Lingkungan (December, 2019) Vol 14, No 1 (2019): Jurnal Rekayasa Kimia & Lingkungan (June, 2019) Vol 13, No 2 (2018): Jurnal Rekayasa Kimia & Lingkungan (December, 2018) Vol 13, No 1 (2018): Jurnal Rekayasa Kimia & Lingkungan (June, 2018) Vol 12, No 2 (2017): Jurnal Rekayasa Kimia & Lingkungan Vol 12, No 1 (2017): Jurnal Rekayasa Kimia & Lingkungan Vol 11, No 2 (2016): Jurnal Rekayasa Kimia & Lingkungan Vol 11, No 1 (2016): Jurnal Rekayasa Kimia & Lingkungan Vol 10, No 4 (2015): Jurnal Rekayasa Kimia & Lingkungan Vol 10, No 3 (2015): Jurnal Rekayasa Kimia & Lingkungan Vol 10, No 2 (2014): Jurnal Rekayasa Kimia & Lingkungan Vol 10, No 1 (2014): Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 4 (2013): Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 3 (2013): Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 2 (2012): Jurnal Rekayasa Kimia & Lingkungan Vol 9, No 1 (2012): Jurnal Rekayasa Kimia & Lingkungan Vol 8, No 2 (2011): Jurnal Rekayasa Kimia & Lingkungan Vol 8, No 1 (2011): Jurnal Rekayasa Kimia & Lingkungan Vol 7, No 4 (2010): Jurnal Rekayasa Kimia & Lingkungan Vol 7, No 3 (2010): Jurnal Rekayasa Kimia & Lingkungan Vol 7, No 2 (2009): Jurnal Rekayasa Kimia & Lingkungan Vol 7, No 1 (2009): Jurnal Rekayasa Kimia & Lingkungan Vol 6, No 2 (2007): Jurnal Rekayasa Kimia & Lingkungan Vol 6, No 1 (2007): Jurnal Rekayasa Kimia & Lingkungan Vol 5, No 1 (2006): Jurnal Rekayasa Kimia & Lingkungan More Issue