cover
Contact Name
Aditya Rianjanu
Contact Email
aditya.rianjanu@mt.itera.ac.id
Phone
+6282182427752
Journal Mail Official
tarmizi.taher@tl.itera.ac.id
Editorial Address
OZT Building, Sumatera Institut of Technology, Indonesia
Location
Unknown,
Unknown
INDONESIA
Greensusmater
ISSN : -     EISSN : 3047910X     DOI : https://doi.org/10.62755/
Greensusmater is a premier, gold open access peer-reviewed academic journal dedicated to advancing knowledge and understanding of green and sustainable materials science and technology. Our aim is to serve as a global platform for researchers, industry professionals, policymakers, and anyone interested in development of green and sustainable materials, to share their insights, discuss theories, and promote environmentally-responsible practices in materials science. We also aim to inspire collaboration, stimulate new ideas, and facilitate the practical application of research findings towards a greener and more sustainable world. In its first inaugural year, Greensusmater will publish two issues within a single volume, with releases in February and July, establishing a biannual publication rhythm.
Articles 21 Documents
Effect of calcination temperature on the performance of hydrothermally grown cerium dioxide (CeO2) nanorods for the removal of Congo red dyes Rianjanu , Aditya; Nuraeni , Resti; Aflaha , Rizky; Khamidy , Nur Istiqomah; Triyana , Kuwat; Taher , Tarmizi
Greensusmater Vol. 1 No. 1 (2024): Inaugural issue
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.1.9-14

Abstract

This study investigates the transformation of CeO2 nanostructures through various calcination temperatures and their subsequent impact on morphological, structural, and photocatalytic properties. X-ray diffraction (XRD) analysis reveals the presence of cerium oxycarbonate in the uncalcined samples, transitioning to a face centered cubic CeO2 phase post-calcination at 500°C. The scanning electron microscopy (SEM) imaging delineates a morphological evolution from distinct, rod-like structures in the uncalcined state to sintered, agglomerated forms as calcination temperatures ascend from 500°C to 800°C. The crystallite size, calculated using Scherrer's Equation, displayed a proportional increase with temperature. The photocatalytic degradation of Congo red dye under UV light was analyzed using UV-Vis spectroscopy, with the calcined samples exhibiting varying degrees of adsorption and photocatalytic activity. The study found that higher calcination temperatures correlate with increased photocatalytic performance, potentially due to enhanced crystallinity. This assertion is supported by pseudo-first-order kinetic modeling, indicating improved photocatalytic efficiency with higher calcination temperatures, underlined by increasing rate constants. These findings underscore the intricate relationship between calcination-induced morphological and structural changes and the photocatalytic prowess of CeO2 nanostructures.
Using hand painting in the fabrication of a negative refractive index metamaterial based on circular shape with paper as the dielectric Hamonangan M , Felix R.M. Hamonangan M; Yudistira , Hadi Teguh Yudistira; Qalbina , Fitrah; Saputro , • Adhitya Gandaryus; Faisal , Amir
Greensusmater Vol. 1 No. 1 (2024): Inaugural issue
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.1.15-19

Abstract

This study aims to use the hand-painting method in designing and fabricating a metamaterial based on a circular shape that exhibits a negative refractive index over the microwave spectrum. Hand painting is a simple and inexpensive fabrication method. This study applies silver ink as a periodic conductor to glossy paper as the dielectric substrate. The spectrum of investigation in this study is 3–6 GHz, and the experiment results are compared with the simulation results. The slight error obtained between transmission results from the simulation and the experiments reflects limitations in the fabrication methods used. Overall, the experiment results have a similar trend to the simulation results. The electrical properties of the metamaterial are retrieved from the transmission and reflection simulation results. The simulation results are employed instead of the experimental results because of the fluctuating data provided by the latter. The refractive index presents a negative value at 3–3.6 GHz.
Emerging trends and future perspectives in adsorption technologies for water and wastewater treatment: A sunrise or sunset horizon? Taher , Tarmizi; Rianjanu , Aditya
Greensusmater Vol. 1 No. 1 (2024): Inaugural issue
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.1.1-8

Abstract

Adsorption technology has been a focal point of water and wastewater treatment engineering research for over a century, yielding numerous scientific publications. These studies have primarily concentrated on developing efficient adsorbent materials, understanding adsorption mechanisms and characteristics, and investigating the removal of conventional or emerging pollutants. A common objective cited in most of these reports is the practical application of the adsorption process in municipal water or wastewater treatment plants, aiming to enhance water quality and safety. However, the majority of these studies overlook issues related to technology transfer, thereby widening the gap between academic recommendations and their practical implementation in industry. In this review, we trace the evolution of adsorption technology in water and wastewater treatment, evaluating its application viability and highlighting the approaches that hold the greatest promise for the future. Furthermore, we propose strategies for scientists and engineers dedicated to advancing research efforts that translate into industrially viable adsorption technologies for water treatment. While the practical effectiveness of adsorption technologies may not fully align with academic enthusiasm, this critical evaluation should not dismiss their potential as future technology since adsorption retains significant and distinct advantages that merit further exploration.
Enhanced methylene blue removal from aqueous solution by electrocoagulation technique using combined iron and copper electrode Fajar , Mutiara; Agnesia , Sherly; Awan , Fajriharish Nur
Greensusmater Vol. 1 No. 1 (2024): Inaugural issue
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.1.20-24

Abstract

The rapid advancement in the industrial sector, particularly within the textile industry, necessitates the use of colorants for fabric processing, with methylene blue being a predominant choice. However, the improper disposal of methylene blue dyes can lead to significant environmental hazards, underscoring the need for effective treatment methods before release into ecosystems. This study explores electrocoagulation, an innovative treatment technique powered by electrical energy, as a potential solution for mitigating the environmental impact of methylene blue in textile wastewater. The research investigates the efficiency of the electrocoagulation process using iron (Fe) and copper (Cu) electrodes under various operational conditions, including electrode spacing (1, 1.5, and 2 cm), applied voltage (15, 20, and 24 volts), and electrode contact time (5, 10, 15, 20, 30, and 60 minutes). The findings reveal that the electrocoagulation method achieves an optimal methylene blue removal efficiency of 99% under specific conditions: an electrode distance of 1.5 cm, an applied voltage of 24 volts, and a contact duration of 30 minutes. This research underscores the potential of electrocoagulation as an efficient and environmentally friendly approach for the treatment of textile wastewater, contributing to the sustainable management of industrial effluents.
Degradation of air pollutants from waste burning using photocatalyst TiO2 with Co(NO3)2 doped under ultraviolet irradiation Munna , Kamila; Aflaha , Rizky; Chotimah , Chotimah
Greensusmater Vol. 1 No. 1 (2024): Inaugural issue
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.1.25-31

Abstract

Air pollutants, such as carbon dioxide (CO2), hydrogen cyanide (HCN), and methane (CH4), can harm the respiratory organs of humans and cause several diseases. This study successfully utilized a photocatalyst from TiO2 with Co(NO3)2 doped to degrade these air pollutants from waste burning. The photocatalyst layer was produced by dissolving TiO2 and Co(NO3)2 in distilled water, and then the solution was coated on a mica surface using a spray coating method. The coated mica was then dried in an oven. The crystallite structure of TiO2/Co(NO3)2 was analyzed by X-ray diffraction. The obtained crystallite size was (15.38 ± 0.03) nm with lattice parameters a and c were (3.8 ± 0.3) Å and (9.3 ± 0.3) Å, respectively, which shows that it is an anatase phase. The band gap energy was measured by diffuse reflectance UV-visible spectroscopy and analyzed by Tauc's plot method. The measured band gap energy of the photocatalyst was 2.81 eV, which can be easily activated by ultraviolet (UV) light. The photocatalyst sheets successfully degraded air pollutants from waste burning, including 53.139% CO2 for 4 hours, 100% HCN for 10 minutes, and 72.381% CH4 for 40 minutes. Therefore, the fabricated photocatalyst in this study can potentially be an alternative to degrading air pollutants, especially CO2, HCN, and CH4.
Investigating the influence of polyacrylonitrile nanofiber thickness on particulate matter filtration performance from cigarette smoke Wardiningsih , Dina; Aflaha , Rizky; Maharani , Chlara Naren; Triyana , Kuwat; Kusumaatmaja, Ahmad
Greensusmater Vol. 1 No. 1 (2024): Inaugural issue
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.1.32-38

Abstract

This study successfully fabricated polyacrylonitrile (PAN) nanofiber in various thicknesses as particulate matter (PM) filtration membranes using the electrospinning method. The PM source used was derived from cigarette smoke. Scanning electron microscopy (SEM) images and Fourier-transform infrared (FTIR) spectra are provided in the manuscript to observe the morphology and chemical composition of the fabricated nanofiber membrane. The thickness of the nanofiber was controlled based on the volume of the polymer solution, which was 4 mL, 6 mL, and 8 mL, and had a thickness of (52 ± 2) µm, (176 ± 27) µm, and (479 ± 38) µm, respectively (denoted as NF-4, NF-6, and NF-8 membranes). The results showed that the nanofiber membrane performed well against PM0.3, PM1, and PM2.5, with efficiency above 95.7%. Furthermore, it was observed that increasing the thickness of the nanofiber resulted in higher filtration efficiency. This trend is evident in the NF-8 membrane, which exhibited an efficiency of (97.9 ± 0.3)%, compared to only (95.7 ± 0.2)% for the NF-4 membrane against PM0.3. However, the pressure drop is also higher ((0.03 ± 0.005) kPa), which causes a trade-off in the quality factor (QF) of fabricated nanofiber performance as a PM filtration membrane.
Role of Ni dopant on the improvement of ZnO-based reusable photocatalytic materials Nurfani, Eka; Firdaus, Azka R.; Triyadi, Dedi; Rianjanu, Aditya
Greensusmater Vol. 1 No. 2 (2024)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.2.51-56

Abstract

This study investigates the impact of Ni doping on the enhancement of ZnO-based reusable photocatalytic materials. Ni concentrations derived from nickel chloride hexahydrate were 0 wt% (ZN-1), 1 wt% (ZN-2), and 3 wt% (ZN-3). Field-emission scanning electron microscopy (FESEM) analysis reveals a significant morphological transformation from flower-like structures in pure ZnO to nanoridges in Ni-doped ZnO. X-ray diffraction data indicate a reduction in crystalline quality with Ni incorporation. UV-Vis spectroscopy shows an increase in the bandgap from 3.22 eV for pure ZnO (ZN-1) to 3.34 eV for Ni-doped ZnO (ZN-2 and ZN-3). Photocatalytic efficiency improves markedly, achieving 30%, 60%, and 80% degradation for ZN-1, ZN-2, and ZN-3, respectively, after 1-hour illumination. Notably, the photocatalytic performance remains robust even after five recycling cycles. These findings reveal the potential of Ni-doped ZnO as a cost-effective, reusable, and highly efficient photocatalytic material.
Adsorption and Diffusion Energies Calculation of Sodium Ion Battery using GeTe Anode : A Density Functional Theory Study Putra, Septia Eka Marsha; Habibi, Fathan Akbar Nur; Simatupang, Daniel Hasiholan; Mustaqim, Amrina
Greensusmater Vol. 1 No. 2 (2024)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.2.57-62

Abstract

Sodium batteries are the most potential candidates for future and green energies storage systems. However, there are problems with structural instability in the electrodes, which affect battery performance. Therefore, this study investigated the adsorption and diffusion mechanisms at the anode using a phase puckered Germanium Telluride (GeTe) monolayer structure. Density functional theory (DFT) calculations show that the Na-adsorbed hollow Te-Te structure is the most stable adsorption configuration (-1.25 eV). In the diffusion scheme, Na atoms move through the hollow Te-Te (initial state) followed by the hollow Ge-Ge (transition state), then to the hollow Te-Te (final state). The diffusion mechanism that occurs has lowest energy of 0.09 × 10-4 eV. These results suggest that the phase puckered GeTe monolayer has the potential as a high-performance sodium battery anode.
Photocatalytic degradations of organic pollutants in wastewater using hydrothermally grown ZnO nanoparticles Phasa, Agita; Aini, Quratul; Siregar, Muhammad Yasin; Sabilla, Sal; Triyadi, Dedi; Aflaha, Rizky; Khan, Mochammad Ghulam Isaq; Nurfani, Eka
Greensusmater Vol. 1 No. 2 (2024)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.2.39-43

Abstract

The increasing prevalence of organic pollutants in wastewater poses a significant environmental challenge due to their persistence and harmful effects. Photocatalysis using semiconductor nanoparticles, such as ZnO, has emerged as a promising approach for pollutant degradation, but optimizing the structural and functional properties of these materials remains a critical challenge. In this study, ZnO nanoparticles were synthesized via a hydrothermal method with varying durations (4, 6, and 8 hours) to investigate the impact of synthesis time on their photocatalytic efficiency. The structural and compositional properties were characterized using SEM, XRD, and EDS analyses, revealing that longer synthesis times improve crystallinity and alter the Zn:O atomic ratio, affecting defect density and stoichiometry. Photocatalytic performance was evaluated through the degradation of an organic pollutant under UV illumination. ZnO-6h exhibited the highest rate constant (k=0.017 min−1), outperforming ZnO-4h (k=0.016 min−1) and ZnO-8h (k=0.013 min−1). This superior activity is attributed to an optimal combination of high crystallinity, intermediate morphology, and the presence of oxygen vacancies that enhance charge carrier dynamics. The findings demonstrate that synthesis duration is a critical parameter in tuning the structural and photocatalytic properties of ZnO nanoparticles. This study provides insights into the design of ZnO-based photocatalysts and underscores their potential for environmental remediation. Future research could extend these findings by exploring scalability and pollutant-specific applications, paving the way for more efficient wastewater treatment technologies.
Congo red dye adsorption using ZnAl layered double hydroxide fabricated using hydrothermal methods Fitri, Anisa; Lumbanraja, Febriwan Rizki; Hanifah, Istiara Rizqillah; Prasetya, Bayu; Aflaha, Rizky; Putra, Septia Eka Marsha
Greensusmater Vol. 1 No. 2 (2024)
Publisher : Green and Sustainable Materials Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62755/greensusmater.2024.1.2.44-50

Abstract

Industrial dye pollutants, particularly azo dyes like Congo red, pose significant environmental and health risks due to their toxic and non-biodegradable nature. This study assesses ZnAl Layered Double Hydroxide (ZnAl LDH) as an effective adsorbent, incorporating comprehensive materials characterization and adsorption isotherm analyses. Materials characterization using SEM and XRD confirmed the structural integrity and morphological suitability of ZnAl LDH for dye adsorption. Results demonstrated that ZnAl LDH, particularly the HMTA-based variant (h-ZnAl LDH), achieved superior adsorption capacities of up to 17.8 mg/g, significantly outperforming the urea-based (u-ZnAl LDH) with capacity of 12.3 mg/g. Kinetic analysis showed that the pseudo-second-order (PSO) model provided a better fit (R2 = 0.995) than the pseudo-first-order (PFO) model, indicating that chemisorption plays a dominant role in the adsorption mechanism. The adsorption process was also best described by the Langmuir isotherm model (R2 = 0.989), indicating monolayer adsorption on a homogeneous surface, while the Freundlich model (R2 = 0.944) also provided a reasonable fit, suggesting some degree of multilayer adsorption on heterogeneous surfaces. The superior performance of HMTA-based ZnAl LDH presents a significant advancement in wastewater treatment technologies

Page 1 of 3 | Total Record : 21