cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurtdm@batan.go.id
Editorial Address
Pusat Teknologi dan Keselamatan Reaktor Nukir (PTKRN) Badan Tenaga Nuklir Nasional (BATAN) Gedung 80 Kawasan Puspiptek Setu - Tangerang Selatan Banten - Indonesia (15310)
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega
ISSN : 1411240X     EISSN : 25279963     DOI : -
Core Subject : Science,
Jurnal Teknologi Reaktor Nuklir "TRI DASA MEGA" adalah forum penulisan ilmiah tentang hasil kajian, penelitian dan pengembangan tentang reaktor nuklir pada umumnya, yang meliputi fisika reaktor, termohidrolika reaktor, teknologi reaktor, instrumentasi reaktor, operasi reaktor dan lain-lain yang menyangkut reaktor nukli. Frekuensi terbit tiga (3) kali setahun setiap bulan Februari, Juni dan Oktober.
Arjuna Subject : -
Articles 225 Documents
DESAIN TERAS DAN BAHAN BAKAR PLTN JENIS PEBBLE BED MODULAR REACTOR (PBMR) DENGAN MENGGUNAKAN PROGRAM SRAC Sungkowo Wahyu Santoso; Andang Widiharto; Yohannes Sardjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 16, No 2 (2014): Juni 2014
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (357.293 KB)

Abstract

Analisis desain down scale teras dan bahan bakar PBMR-HTR dengan menggunakan program SRAC bertujuan mengetahui pengaruh variasi pengayaan U235, burnable poison, laju aliran pendingin dan suhu pendingin masuk terhadap kekritisan teras serta aspek-aspek keselamatan reaktor nuklir dengan parameter nilai keff dan koefisien reaktivitas suhu bahan bakar, moderator dan pendingin. Teras PBMR-HTR berbentuk silinder finite dengan lubang ditengahnya yang berisi 334.000 bahan bakar pebble bed. Bahan bakar berupa UO2, moderator grafit dan pendingin helium. Model desain down scale dilakukan pada ½ teras yang mewakili keseluruhan teras. Penelitian dilakukan dengan memvariasikan pengayaan bahan bakar sebesar 8%, 8,5%, 9%, 9,5% dan 10% sementara variasi konsentrasi burnable poison sebesar 5 ppm, 7 ppm, 9 ppm, 11 ppm, dan 15 ppm. Variasi laju aliran pendingin sebesar 60%, 80%, 100%, 120%, dan 140% sementara variasi suhu masukan pendingin sebesar 673,15K; 723,15K; 773,15K; 823,15K dan 873,15K. Pada penelitian ini keff pada BOL tanpa Gd2O3 sebesar 1.026213 dan EOL sebesar 0.995865 dengan excess reactivity sebesar 2,5 % dengan pengkayaan U235 9%. Sementara keffpada BOL dengan menggunakan Gd2O3 sebesar 1.0069680 dan EOL sebesar 0.9961928 dengan excess reactivity sebesar 0.69 % dengan konsentrasi Gd2O3 7 ppm. Koefisien reaktivitas suhu bahan bakar,moderator dan pendingin berturut-turut sebesar -9,074583E-05/K, -2,971833E-05/K dan 1,120700E-05/K. Koefisien reaktivitas bernilai negatif menunjukkan karakteristik keselamatan melekat (inherent safety) telah terpenuhi. Peningkatan suhu masukan dan penurunan laju aliran pendingin berkontribusi menurunkan nilai keff teras sehingga koefisien reaktivitas bernilai negatif.Kata kunci : PBMR-HTR, kritikalitas, reaktivitas, down scale, burnable poison  Core and fuel down scale analysis on PBMR-HTR using SRAC program aims to identify the influence of U235 enrichment, burnable poison, coolant flow rate and coolant temperature entered to criticality core and safety aspects of nuclear reactor with the parameters are multiplication factor (keff) and fuel temperature coefficient, moderator temperature coefficient and coolant temperature coefficient. Core PBMR-HTR finite cylindrical with a hole in the middle which contains 334,000 pebble fuel bed. That consist of UO2 fuel, graphite moderator and helium coolant. Down scale the design model performed on the half core represent the whole core. The study was conducted by varying the fuel enrichment of 8%; 8.5%; 9%; 9.5% and 10%, while variation burnable poison enrichment at 5 ppm, 7 ppm, 9 ppm, 11 ppm and 15 ppm. The variation of coolant flow rate of 60%, 80%, 100%, 120% and 140% from its original value at 17.118 kg/s while the variation of coolant temperature input at 673.15 K; 723.15 K; 773.15 K; 823.15 K and 873.15 K. In this research, value of keff without Gd2O3 are 1.026213 (BOL) and 1.004173 (EOL) with excess reactivity of 2.55% with 9% U235 enrichment. While keff on BOL by using 7 ppm Gd2O3 of 1.006968 and 1.004198 for EOL with excess reactivity of 0.69%. Fuel temperature reactivity coefficient, moderator and coolant in a row for -8.597317E-05/K; -2.595284E-05 /K and 1.1496E-06/K. Temperature reactivity coefficient is negative. This indicates inherent safety characteristic have been met. Increasing the input temperature and coolant flow rate reduction lowers the value of keff core, and it will contribute to negative reactivity coefficient. Keywords : PBMR-HTR, criticality, reactivity, down scale, burnable poison
RELAP5 SIMULATION FOR SEVERE ACCIDENT ANALYSIS OF RSG-GAS REACTOR Andi Sofrany Ekariansyah; Endiah Puji Hastuti; Sudarmono Sudarmono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 20, No 1 (2018): Februari 2018
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (824.192 KB) | DOI: 10.17146/tdm.2018.20.1.4040

Abstract

The research reactor in the world is to be known safer than power reactor due to its simpler design related to the core and operational chararacteristics. Nevertheless, potential hazards of research reactor to the public and the environment can not be ignored due to several special features. Therefore the level of safety must be clearly demonstrated in the safety analysis report (SAR) using safety analysis, which is performed with various approaches and methods supported by computational tools. The purpose of this research is to simulate several accidents in the Indonesia RSG-GAS reactor, which may lead to the fuel damage, to complement the severe accident analysis results that already described in the SAR. The simulation were performed using the thermal hydraulic code of RELAP5/SCDAP/Mod3.4 which has the capability to model the plate-type of RSG-GAS fuel elements. Three events were simulated, which are loss of primary and secondary flow without reactor trip, blockage of core subchannels without reactor trip during full power, and loss of primary and secondary flow followed by reactor trip and blockage of core subchannel. The first event will harm the fuel plate cladding as showed by its melting temperature of 590 °C. The blockage of one or more subchannels in the one fuel element results in different consequences to the fuel plates, in which at least two blocked subchannels will damage one fuel plate, even more the blockage of one fuel element. The combination of loss of primary and secondary flow followed by reactor trip and blockage of one fuel element has provided an increase of fuel plate temperature below its melting point meaning that the established natural circulation and the relative low reactor power is sufficient to cool the fuel element.Keywords: loss of flow, blockage, fuel plate, RSG-GAS, RELAP5 SIMULASI RELAP5 UNTUK ANALISIS KECELAKAAN PARAH PADA REAKTOR RSG-GAS. Reaktor riset di dunia diketahui lebih aman dari pada reaktor daya karena desainnya yang lebih sederhana pada teras dan karakteristika operasinya. Namun demikian, potensi bahaya reaktor riset terhadap publik dan lingkungan tidak bisa diabaikan karena beberapa fitur tertentu. Oleh karena itu, level keselamatan reaktor riset harus jelas ditunjukkan dalam Laporan Analisis Keselamatan (LAK) dalam bentuk analisis keselamatan yang dilakukan dengan berbagai macam pendekatan dan metode dan didukung dengan alat komputasi. Tujuan penelitian ini adalah untuk mensimulasikan beberapa kecelakaan parah pada reaktor RSG-GAS yang dapat menyebabkan kerusakan bahan bakar untuk memperkuat hasil analisis kecelakaan parah yang sudah ada dalam LAK. Simulation dilakukan dengan program perhitungan RELAP5/SCDAP/Mod3.4 yang memiliki kemampuan untuk memodelkan elemen bahan bakar tipe pelat di RSG-GAS. Tiga kejadian telah disimulasikan yaitu hilangnya aliran primer dan sekunder dengan kegagalan reaktor untuk dipadamkan, tersumbatnya beberapa kanal pendingin bahan bakar pada daya penuh, dan hilangnya aliran primer dan sekunder yang diikuti dengan tersumbatnya beberapa kanal pendingin bahan bakar setelah reaktor padam. Kejadian pertama akan membahayakan pelat bahan bakar dengan naiknya temperatur kelongsong hingga titik lelehnya yaitu 590 °C. Tersumbatnya satu atau beberapa kanal pada satu elemen bahan bakar menyebabkan konsekuensi yang berbeda pada pelat bahan bakar, dimana paling sedikit tersumbatnya 2 kanal akan merusak satu pelat bahan bakar, apalagi tersumbatnya satu elemen bahan bakar. Kombinasi antara hilangnya aliran pendingin primer dan sekunder yang diikuti dengan tersumbatnya satu kanal bahan bakar setelah reaktor dipadamkan menyebabkan naiknya temperatur kelongsong di bawah titik lelehnya yang berarti sirkulasi alam yang terbentuk dan daya yang terus turun cukup untuk mendinginkan elemen bahan bakar.Kata kunci: kehilangan aliran, penyumbatan, pelat bahan bakar, RSG-GAS, RELAP5
PEROLEHAN SUHU AIR PENDINGIN PRIMER REAKTOR TRIGA 2000 KETIKA PENAMBAHAN CEROBONG DAN PELAT PENUKAR PANAS Reinaldy Nazar
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 13, No 3 (2011): Oktober 2011
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (555.241 KB)

Abstract

Kesinambungan operasi reaktor TRIGA 2000 di antaranya ditentukan oleh suhu bahan bakar dan suhu air pendingin primer. Sebagai contoh pengoperasian reaktor TRIGA 2000 saat ini sulit mencapai daya 2000 kW, karena suhu di pusat elemen bahan bakar di dalam teras reaktor mencapai 675 oC, suhu pendingin primer yang masuk ke teras reaktor mencapai 41,3 oC, suhu pendingin primer yang ke luar dari tangki reaktor mencapai 48,2 oC. Tingginya suhu elemen bahan bakar dan suhu pendingin primer di dalam teras telah meningkatkan pendidihan dan menambah pembentukan gelembung uap di dalam teras reaktor, sehingga menurunkan moderasi neutron oleh pendingin primer di dalam teras dan reaktor tidak mampu mencapai daya 2000 KW. Beberapa kegiatan yang dapat dilakukan untuk menurunkan suhu bahan bakar dan air pendingin primer di dalam teras reaktor TRIGA 2000, di antaranya dengan menempatkan cerobong di atas teras reaktor dan menambah pelat penukar panas. Mengingat studi kasus ini tidak memungkinkan untuk dilakukan secara eksperimen, maka analisis dilakukan melalui kajian teoritik menggunakan program komputer CFD. Berdasarkan hasil kajian yang telah dilakukan diketahui bahwa dengan menambah tinggi cerobong menjadi 2 m, pelat penukar panas menjadi 384 lembar, laju alir pendingin primer 950 gpm, dan laju alir pendingin sekunder menjadi 1200 gpm, mampu menurunkan suhu pendingin primer yang ke luar dari penukar panas atau suhu pendingin primer yang masuk ke teras reaktor menjadi 30,48 oC. Jika kondisi ini digunakan tentunya akan menurunkan suhu maksimum kelongsong bahan bakar, dan suhu pendingin primer di dalam teras, sehingga akan mengurangi pendidihan di dalam teras reaktor, meskipun hal ini akan menaikkan konsentrasi N-16 di permukaan tangki reaktor menjadi 49,41%.Kata kunci: cerobong, pelat penukar panas, suhu bahan bakar, suhu pendingin primer. Continuation of the TRIGA 2000 reactor operation is determined by the fuel and primary cooling water temperature. For example, recently the TRIGA 2000 reactor is very difficult to reach the maximum power level of 2000 kW, because at maximum power level, the maximum fuel temperature in the reactor core is 675 oC, the inlet primary cooling water temperature into reactor core is 41.3 oC, and the outlet primary cooling water from reactor tank is 48.2 oC. The increasing of the fuel temperature and primary cooling water temperature in reactor core, increase also the bubbling and the bubble of vapour in the reactor core so, it reduces the neutrons moderation in the reactor core and then the reactor is unable to reach power level of 2000 kW. There are some actions can be done to reduce the fuel temperature and the primary cooling water temperature in reactor core, as to give a chimney above reactor core and to add additional heat exchanger plates. Because these studies can not be done experimentally, then the analysis done through theoretical studies using computer programs RELAP5/Mod3.2. Based on result of the study, it is known that by rising the chimney height to become 2 m, give additional heat exchanger plates to become 384 slabs, flow rate of primary cooling water is 950 gpm, and to increase flow rate of secondary cooling water to become 1200 gpm, it can reduced the primary cooling water temperature exit from heat exchanger or the primary cooling water temperature into reactor core to become 30.48 oC. If this condition applied, it can reduce the fuel cladding and the primary cooling water maximum temperature in reactor core, so the bubbling decreased in the reactor core, though it will increase the maximum concentration of N-16 on the tank surface to become 49.41%. Keywords: chimney, heat exchanger plate, fuel temperature, primary cooling temperature
REACTOR CAVITY COOLING SYSTEM WITH PASSIVE SAFETY FEATURES ON RDE: THERMAL ANALYSIS DURING ACCIDENT Rahayu Kusumastuti; Sriyono Sriyono; Mulya Juarsa; Hendro Tjahjono; I. D. Irianto; Topan Setiadipura; D. H. Salimy; A. Hafid
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 21, No 2 (2019): JUNI 2019
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1878.724 KB) | DOI: 10.17146/tdm.2019.21.2.5499

Abstract

Reaktor Daya Eksperimental (RDE) is an experimental power reactor based on HTGR technology that implements inherent safety system. Its safety systems are in compliance with “defense in depth” philosophy. RDE is also equipped with reactor cavity cooling system (RCCS) used to remove the heat transferred from the reactor vessel to the containment structure. The RCCS is designed to fulfil this role by maintain the reactor vessel under the maximum allowable temperature during normal operation and protecting the containment structure in the event of failure of all passive cooling systems. The performance and reliability of the RCCS, therefore, are considered as critical factors in determining maximum design power level related to heat removal. RCCS for RDE will use a novel shape to efficiently remove the heat released from the RPV through thermal radiation and natural convection. This paper discusses the calculation of RCCS thermal analysis during accident. The RPV temperature must be maintained below 65ºC. The accident is assumed that there is no electricity from diesel generator supplied to the blower. The methodology used is based on the calculation of mathematical model of the RCCS in the passive mode. The heat is released through cavity by natural convection, in which the RCCS is capable to withdraw the heat at the rate of 50.54 kW per hour.Keywords: Passive safety, RCCS, RDE, Thermal analysis
ANALISIS DESAIN PROSES SISTEM PENDINGIN PADA REAKTOR RISET INOVATIF 50 MW Sukmanto Dibyo; Endiah Puji Hastuti; Ign. Djoko Irianto
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 17, No 1 (2015): Pebruari 2015
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (308.474 KB) | DOI: 10.17146/tdm.2015.17.1.2235

Abstract

Reaktor Riset Inovatif (RRI) merupakan jenis MTR (Material Testing Reactor) yang dipersiapkan ke depan sebagai desain reaktor baru. Daya RRI telah ditetapkan dari perhitungan neutronik dan termohidrolika teras yaitu 50 MW termal. Reaktor bertekanan 8 kgf/cm2 dan laju aliran massa pendingin primer 900 kg/s. Tantangan yang penting dalam menindak lanjuti desain reaktor ini adalah analisis desain pada sistem pendingin. Makalah ini bertujuan untuk menganalisis desain proses sistem pendingin utama reaktor RRI daya 50 MW (RRI-50) dengan menggunakan program Chemcad 6.1.4. Dalam analisis ini dilakukan perhitungan neraca massa dan energi (mass/energy balances) pada sistem pendingin primer dan sekunder sebagai pendingin utama. Masing-masing sistem pendingin tersebut terdiri dari 2 jalur beroperasi secara paralel dan 1 jalur redundansi. Disamping itu untuk desain termal unit komponen telah dianalisis dengan program RELAP5, frenchcreek dan Metoda Analitik. Hasil analisis yang diperoleh adalah desain diagram sistem pendingin yang mencakup data parameter entalpi, temperatur, tekanan dan laju aliran massa pendingin untuk masing-masing jalur. Adapun hasil desain unit komponen utama pada RRI-50 adalah tangki tunda dengan volume 51,5 m3, 2 unit pompa sentrifugal dan 1 unit pompa cadangan pada pendingin primer daya 141 kW/pompa dan pendingin sekunder daya 206 kW/pompa, 2 unit penukar panas tipe shell-tube dengan koefisien termal overall 1377 W/m2.oC dan 4 unit menara pendingin yang mampu melepaskan panas ke udara dengan desain temperatur approach 5,0 oC dan temperatur range 9,0 oC. Desain sistem pendingin reaktor RRI-50 ini telah menetapkan parameter operasi sistem pendingin yaitu temperatur, tekanan dan laju aliran massa pendingin dengan mempertimbangkan tuntutan aspek keselamatan teras reaktor sehingga desain temperatur maksimum pendingin masuk ke teras 44,5 oC. Kata kunci : RRI 50 MW, desain sistem pendingin, program Chemcad 6.1.4   Innovative Research Reactor RRI is a type of MTR (Material Testing Reactor), which is being prepared in the future as a design of new reactor. The power of RRI has been determined based on the core thermalhydraulic and neutronic calculation, which is 50 MWt. The reactor pressure is 8 kgf/cm 2 and coolant mass flow rate is 900 kg/s. The important challenge in the follow up of this reactor design is the design analysis of cooling system. The purpose of this study is to analyze the design of RRI reactor main coolant system at the power of 50 MWt (RRI-50) using ChemCAD 6.1.4. In this analysis the mass and energy balances at the primary and secondary cooling system are calculated as main coolant. Each of the cooling system consists of two lines operating in parallel and redundancy lines. Besides that, the thermal design of the component units have been analyzed using RELAP5, FrenchCreek and Analytical Methods. The analyses result obtained is a design of cooling system diagram which includes parameter of enthalpy, temperature, pressure and coolant mass flow rate of each line. Meanwhile, design result of main component unit are delay tank of 51.5 m3 volume, 2 unit centrifugal pumps and 1 unit stand-by pump for the primary coolant pump each of 141 kW power and secondary coolant pump each of 206 kW power, 2 unit of shell-tube heat exchanger with overall thermal coefficient of 1377 W/m2.oC and 4 unit cooling tower that capable to release the heat to the air at approach temperature of 5,0 oC and range temperature of 9,0 oC. design of reactor coolant system RRI-50 has decided the operating parameters of cooling system are temperature, pressure and mass flow rate by considering into the demands of the safety aspects of the reactor core therefore design of maximum coolant temperature to the reactor core is 44,5 oC. Keywords : RRI 50MW,  design of cooling system, program Chemcad 6.1.4.
DESIGN ANALYSIS ON OPERATING PARAMETER OF OUTLET TEMPERATURE AND VOID FRACTION IN RDE STEAM GENERATOR Sukmanto Dibyo; Ign. Djoko Irianto
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 19, No 1 (2017): Februari 2017
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/tdm.2017.19.1.3228

Abstract

HTGR is one of the next generation reactor types. HTGR is currently considered as one of the leading reactors for the future nuclear power plant. The steam generator is one of the main components in HTGR as well as in RDE.  In the steam generator, the heat is transferred by high temperature helium gas in the shell side to water in the tube side to generate the superheated steam. the purpose of this work is to design the operating parameter of outlet temperature and void fraction of steam based on feed water mass flow rate and inlet temperature variations in RDE steam generator. In this work, the Chemcad program was used. Both inlet and outlet temperature of helium gas have been set up as boundary conditions. The result shows that using the mass flow rate of 4.3 kg/s - 4.8 kg/s and water inlet temperature of 110 oC - 160 oC, the superheated steam outlet temperature (void fraction = 1.0) is obtained in the range of 275.5 oC – 600 oC.This analysis is beneficial to assess 10 MW RDE design especially in the steam generator system operating parameters.Keywords: outlet temperature, void fraction, superheated steam, RDE steam generator ANALISIS DESAIN PARAMETER OPERASI UNTUK TEMPERATUR KELUARAN DAN FRAKSI UAP PADA PEMBANGKIT UAP RDE. Reaktor daya HTGR adalah salah satu tipe reaktor generasi lanjut. HTGR saat ini merupakan desain reaktor yang dipertimbangkan untuk pembangkit listrik unggulan dimasa mendatang. Pembangkit uap merupakan salah satu komponen utama pada HTGR begitu pula pada RDE. Di dalam pembangkit uap, panas dari gas helium temperatur tinggi pada sisi shell di transfer ke air pada sisi tube pembangkit uap untuk menghasilkan uap lewat jenuh. Tujuan analisis ini adalah mendesain parameter operasi terhadap temperatur keluaran dan fraksi uap berdasarkan variasi laju alir massa air umpan dan temperatur masuk pada RDE. Dalam analisis digunakan program Chemcad, temperatur gas helium masuk dan keluar ditentukan sebagai kondisi batas. Hasil menunjukkan bahwa dengan menggunakan laju alir massa 4,3 kg/detik - 4,8 kg/detik dan temperatur masukan air umpan dari 110 oC -160 oC dapat diperoleh uap lewat jenuh (fraksi uap= 1,0) pada temperatur keluaran dalam rentang 275,5 oC - 600 oC. Analisis ini berguna untuk memberikan kajian desain RDE 10 MW khususnya parameter operasi sistem pembangkit uap.Kata-kata kunci: temperatur keluaran, fraksi uap, uap lewat jenuh, pembangkit uap RDE 
DESAIN TERAS PLTN JENIS PEBBLE BED MODULAR REACTOR (PBMR) MENGGUNAKAN PAKET PROGRAM MCNP-5 PADA KONDISI BEGINNING OF LIFE Ralind Re Marla; Yohannes Sardjono; Supardi Supardi
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 16, No 3 (2014): Oktober 2014
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (365.708 KB)

Abstract

Telah dilakukan desain teras Pembangkit Listrik Tenaga Nuklir (PLTN) untuk jenis Pebble Bed Modular Reactor (PBMR) dengan daya 70 MWe untuk keperluan proses smelter pada keadaan beginning of life (BOL). Analisis ini bertujuan untuk mengetahui persen pengkayaan, distribusi suhu dan nilai keselamatan dengan koefisien reaktivitas teras yang negatif pada reaktor jenis PBMR apabila daya reaktor 70 MWe. Analisis menggunakan program Monte Carlo N-Particle-5 (MCNP5) dan dari hasil analisis ini diharapkan dapat memenuhi syarat dalam mendukung program percepatan pembangunan kelistrikan batubara 10.000 MWe khususnya untuk proses smelter, yang tersebar merata di wilayah Indonesia. Hasil penelitian menunjukkan bahwa, faktor perlipatan efektif (k-eff) Reaktor jenis PBMR daya 70 MWe mengalami kondisi kritis pada pengkayaan 5,626 % dengan nilai faktor perlipatan efektif 1,00031±0,00087 dan nilai koefisien reaktivitas suhu pada -10,0006 pcm/K. Dari hasil analisis daat disimpulkan bahwa reaktor jenis PBMR daya 70 MWe adalah aman.  ABSTRACT The core design of Nuclear Power Plant for Pebble Bed Modular Reactor (PBMR) type with 70 MWe capacity power in Beginning of Life (BOL) has been performed. The aim of this analysis, to know percent enrichment, temperature distribution and safety value by negative temperature coefficient at type PBMR if reactor power become lower equal to 70 MWe. This analysis was expected become one part of overview project development the power plant with 10.000 MWe of total capacity, spread evenly in territory of Indonesia especially to support of smelter industries. The results showed that, effective multiplication factor (keff) with power 70 MWe critical condition at enrichment 5,626 %is 1,00031±0,00087, based on enrichment result, a value of the temperature coefficient reactivity is - 10,0006 pcm/K. Based on the results of these studies, it can beconcluded that the PBMR 70 MWe design is theoritically safe.
OPTIMIZATION OF A NEUTRON BEAM SHAPING ASSEMBLY DESIGN FOR BNCT AND ITS DOSIMETRY SIMULATION BASED ON MCNPX I Made Ardana; Yohannes Sardjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 19, No 3 (2017): Oktober 2017
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (625.594 KB) | DOI: 10.17146/tdm.2017.19.3.3582

Abstract

This article involves two main objectives of BNCT system. The first goal includes optimization of 30 MeV Cyclotron-based Boron Neutron Capture Therapy (BNCT) beam shaping assembly. The second goal is to calculate the neutron flux and dosimetry system of BNCT in the head and neck soft tissue sarcoma. A series of simulations has been carried out using a Monte Carlo N Particle X program to find out the final composition and configuration of a beam shaping assembly design to moderate the fast neutron flux, which is generated from the thick beryllium target. The final configuration of the beam shaping assembly design includes a 39 cm aluminum moderator, 8.2 cm of lithium fluoride as a fast neutron filter and a 0.5 cm boron carbide as a thermal neutron filter. Bismuth, lead fluoride, and lead were chosen as the aperture, reflector, and gamma shielding, respectively. Epithermal neutron fluxes in the suggested design were 2.83 x 109 n/s cm-2, while other IAEA parameters for BNCT beam shaping assembly design have been satisfied. In the next step, its dosimetry for head and neck soft tissue sarcoma is simulated by varying the concentration of boron compounds in ORNL neck phantom model to obtain the optimal dosimetry results. MCNPX calculation showed that the optimal depth for thermal neutrons was 4.8 cm in tissue phantom with the maximum dose rate found in the GTV on each boron concentration variation. The irradiation time needed for this therapy were less than an hour for each level of boron concentration.Keywords: Optimization, Beam Shaping Assembly, BNCT, Dosimetry, 30 MeV Cyclotron, MCNPX. OPTIMASI DESAIN KOLIMATOR NEUTRON UNTUK SISTEM BNCT DAN UJI DOSIMETRINYA MENGGUNAKAN PROGRAM MCNPX. Telah dilakukan penelitian tentang sistem BNCT yang meliputi dua tahapan simulasi dengan menggunakan program MCNPX yaitu uji simulasi untuk optimasi desain kolimator neutron untuk sistem BNCT berbasis Siklotron 30 MeV dan uji simulasi untuk menghitung fluks neutron dan dosimetri radiasi pada kanker sarkoma jaringan lunak pada leher dan kepala. Tujuan simulasi untuk mendapatkan desain kolimator yang paling optimal dalam memoderasi fluks neutron cepat yang dihasilkan dari sistem target berilium sehingga dapat dihasilkan fluks neutron yang sesuai untuk sistem BNCT. Uji optimasi dilakukan dengan cara memvariasikan bahan dan ketebalan masing-masing komponen dalam kolimator seperi reflektor, moderator, filter neutron cepat, filter neutron thermal, filter radiasi gamma dan lubang keluaran. Desain kolimator yang diperoleh dari hasil optimasi tersusun atas moderator berbahan Al dengan ketebalan 39 cm, filter neutron cepat berbahan LiF2 setebal 8,2 cm, dan filter neutron thermal berbahan B4C setebal 0,5 cm. Untuk reflektor, filter radiasi gamma dan lubang keluaran masing-masing menggunakan bahan PbF2, Pb dan Bi. Fluks neutron epithermal yang dihasilkan dari kolimator yang didesain adalah sebesar 2,83 x 109 n/s cm-2 dan telah memenuhi seluruh parameter fluks neutron yang sesuai untuk sistem BNCT. Selanjutnya uji simulasi dosimetri pada kanker sarkoma jaringan lunak pada leher dan kepala dilakukan dengan cara memvariasikan konsentrasi senyawa boron pada model phantom leher manusia (ORNL). Selanjutnya model phantom tersebut diiradiasi dengan fluks neutron yang berasal dari kolimator yang telah didesain sebelumnya. Hasilnya, fluks neutron thermal mencapai nilai tertinggi pada kedalaman 4,8 cm di dalam model phantom leher ORNL dengan laju dosis tertinggi terletak pada area jaringan kanker. Untuk masing-masing variasi konsentrasi senyawa boron pada model phantom leher ORNL supaya dapat mematikan jaringan kanker, membutukan waktu iradiasi neutron kurang dari satu jam.Kata kunci: Optimasi, Kolimator, BNCT, Dosimetri, Siklotron 30 MeV, MCNPX
DISTRIBUSI LOGAM BERAT DALAM SEDIMEN DAERAH ALIRAN SUNGAI CIUJUNG BANTEN Theresia Rina Mulyaningsih; Alfian Alfian; Sutisna Sutisna
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 14, No 3 (2012): Oktober 2012
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (857.377 KB)

Abstract

Peningkatan aktivitas masyarakat dan industri di sekitar Sungai Ciujung dapat berdampak terhadap penurunan kualitas Sungai Ciujung. Akibatnya peruntukan sungai untuk bahan baku air minum, irigasi dan perikanan sudah tidak sesuai lagi. Pemantauan kualitas sungai merupakan salah satu strategi proteksi lingkungan hidup, untuk itu diperlukan data yang memadai bagi Pemerintah guna melakukan perencanaan. Telah dilakukan penelitian distribusi logam berat di DAS Ciujung untuk mengetahui kualitasnya. Sejumlah cuplikan sedimen diambil dari beberapa titik sampling di DAS, berdasarkan identifikasi sumber pencemarnya. Sampling dibatasi pada batang tubuh Sungai Ciujung (tidak mencakup anak-anak sungai) dari Ciujung bagian hulu sampai dengan Ciujung bagian hilir ada 31 titik pengambilan. Analisis logam menggunakan teknik analisis aktivasi neutron dan AAS. Hasil penelitian menunjukkan bahwa distribusi logam Co, As, Sb, Cr, Fe, Mn, Zn, Pb, Cu, Ni dan Cd berfluktusi tergantung lokasi titik sampling. Konsentrasi tertinggi untuk logam tersebut ditemukan di daerah industri-1 dan hilir. Evaluasi berdasarkan faktor pengkayaan, faktor kontaminasi dan indeks geoakumulasi, disimpulkan bahwa pada daerah hulu kualitas masih bagus tidak terkontaminasi/tercemar. Daerah Industri-1, industri-2 dan Muara sudah terkontaminasi oleh logam Cd yang bersumber dari kegiatan manusia (antropogenik). Evaluasi berdasarkan indeks beban pencemaran menunjukkan bahwa perairan belum terkontaminasi, tetapi daerah muara, industri-1 dan industri-2 memiliki nilai indeks beban pencemaran yang hampir mendekati baseline level, sehingga monitoring kualitas perairan ke depan tetap perlu dilakukan.Kata kunci: Ciujung, AAN, unsur beracun, polutan, sedimen, DAS. Decrease of Ciujung river quality due to industry and community activities, leading to decreased quality of the river. As a result, river designation for raw drinking water, irrigation and fisheries are not suitable. Monitoring the quality of the river is one of the strategies for the environmental protection; therefore a suitable data should be required by government in a regional planning. A study of heavy metal distribution in the watershed Ciujung was carried out to determine its quality. Number of sediment samples was taken from several sampling points in the watershed, based on its pollutan sources identification. Sampling should be limited on main river (not including tributaries) from upstream to downstream river, there are 31 sampling points. Metal was analyzed using neutron activation analysis technique and AAS. The results showed that the distribution of metals Co, As, Sb, Cr, Fe, Mn, Zn, Pb, Cu, Ni and Cd fluctuate depending on the location. The highest concentrations of metals were found in downstream and industries-1 area. Evaluation based on the enrichment factor, contamination factor and index of geoaccumulation, ware concluded that the quality of upstream is still good has not contaminated / polluted. Industrial-1, industrial-2 area and the downstream ware contaminated by Cd metal source from human activity (anthropogenic). Evaluation based on pollution load index indicates that the river has not been contaminated, but the downstream, industry-1 and 2 areas has a value almost close IBT baseline level, therefore water quality monitoring in the future remains to be carried out. Key word: Ciujung, NAA, toxic elements, pollutan, sediment, watersheds.
RELIABILITY ANALYSIS OF PRIMARY AND PURIFICATION PUMPS IN RSG-GAS USING MONTE CARLO SIMULATION APPROACH Entin Hartini; Hery Adrial; Santosa Pujiarta
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 21, No 1 (2019): February 2019
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1967.313 KB) | DOI: 10.17146/tdm.2019.21.1.5311

Abstract

Reliability and maintenance play an important role in ensuring successful operation of a system. Reliability analysis is often used to determine the probability whether or not a system is functioning. However, limited available data and information are causing uncertainties and inaccuracies on component parameters. The purpose of this study is to conduct component/system reliability analysis using Monte Carlo simulation-based method. This method enables us to estimate the reliability of components/systems including parameter uncertainty and imprecision. It is also useful to predict and evaluate maintenance decisions related to reliability. Monte Carlo method employs random number generation based on the probability of the distribution of processed data, of which then validated with real available data to ensure the simulation condition is relatively similar to real-life condition. The data used in this research is failure data on RSG-GAS components/systems for core configuration number of 81 to 95, accumulated from year 2013 to 2018. The results show that reliability values of components JE01/AP01-02 on TTF 233.619 is 0.579 while for components KBE01/AP-01-02 in TTF 185.38 is 0.368.The component reliability value is 60%, which implies that maintenance may be performed after 225 days and 100 days for componentsJE01/AP01-02 and KBE01/AP01-02, respectively.Keywords: Reliability, Monte Carlo, Component damage, RSG-GAS

Page 2 of 23 | Total Record : 225


Filter by Year

2010 2024


Filter By Issues
All Issue Vol 26, No 2 (2024): June 2024 Vol 26, No 1 (2024): February 2024 Vol 25, No 3 (2023): October 2023 Vol 25, No 2 (2023): June 2023 Vol 25, No 1 (2023): February 2023 Vol 24, No 3 (2022): October 2022 Vol 24, No 2 (2022): June 2022 Vol 24, No 1 (2022): February (2022) Vol 23, No 3 (2021): October (2021) Vol 23, No 2 (2021): June 2021 Vol 23, No 1 (2021): FEBRUARY 2021 Vol 22, No 3 (2020): OCTOBER 2020 Vol 22, No 2 (2020): June 2020 Vol 22, No 1 (2020): February 2020 Vol 21, No 3 (2019): October 2019 Vol 21, No 2 (2019): JUNI 2019 Vol 21, No 1 (2019): February 2019 Vol 20, No 3 (2018): Oktober 2018 Vol 20, No 2 (2018): JUNI 2018 Vol 20, No 1 (2018): Februari 2018 Vol 19, No 3 (2017): Oktober 2017 Vol 19, No 2 (2017): Juni 2017 Vol 19, No 1 (2017): Februari 2017 Vol 18, No 3 (2016): Oktober 2016 Vol 18, No 2 (2016): Juni 2016 Vol 18, No 1 (2016): Februari 2016 Vol 17, No 3 (2015): Oktober 2015 Vol 17, No 2 (2015): Juni 2015 Vol 17, No 1 (2015): Pebruari 2015 Vol 16, No 3 (2014): Oktober 2014 Vol 16, No 2 (2014): Juni 2014 Vol 16, No 1 (2014): Pebruari 2014 Vol 15, No 3 (2013): Oktober 2013 Vol 15, No 2 (2013): Juni 2013 Vol 15, No 1 (2013): Pebruari 2013 Vol 14, No 3 (2012): Oktober 2012 Vol 14, No 2 (2012): Juni 2012 Vol 14, No 1 (2012): Pebruari 2012 Vol 13, No 3 (2011): Oktober 2011 Vol 13, No 2 (2011): Juni 2011 Vol 13, No 1 (2011): Pebruari 2011 Vol 12, No 3 (2010): Oktober 2010 Vol 12, No 2 (2010): Juni 2010 Vol 12, No 1 (2010): Pebruari 2010 More Issue