cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Bahan Alam Terbarukan
ISSN : 23030623     EISSN : 24072370     DOI : -
Core Subject : Science,
This journal presents articles and information on research, development and applications in biomass conversion processes (thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion) and equipment to produce fuels, power, heat, and value-added chemicals from biomass. A biorefinery takes advantage of the various components in biomass and their intermediates therefore maximizing the value derived from the biomass feedstock. A biorefinery could, for example, produce one or several low-volume, but high-value, chemical or nutraceutical products and a low-value, but high-volume liquid transportation fuel such as biodiesel or bioethanol (see also alcohol fuel). The high-value products increase profitability, the high-volume fuel helps meet energy needs, and the power production helps to lower energy costs and reduce greenhouse gas emissions from traditional power plant facilities. Future biorefineries may play a major role in producing chemicals and materials that are traditionally produced from petroleum.
Arjuna Subject : -
Articles 426 Documents
Taylor-Couette Column for Emulsion Liquid Membrane System: Characterisation Study
Jurnal Bahan Alam Terbarukan Vol 8, No 1 (2019): June 2019 [Nationally Accredited - Sinta 2]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v8i1.20162

Abstract

Study on the application of Taylor-Couette column for emulsion liquid membrane system has been done. To optimise extraction process under TCC, a research to investigate effect of viscosity and cylinders rotation is of important. Fluid viscosity was examined by varying volume ratio of kerosene to water. TCC was characterised to determine flow regimes, shear stress, and energy loss distribution. Volume ratio of oil to water was varied at 1:1, 1:3, 1:5, and 1:6 while inner and outer cylinders speed were maintained constant at 300 and 200 rpm, respectively. Investigation on the effect of volume ratio of oil to water towards flow regime ended to same flow regime of Featureless Turbulent. There was degradation of wall shear stress from 8.57x10-2 Pa to 7.42x10-2 Pa.
BIODEGRADATION OF CHRYSENE BY CONSORTIUM OF BACILLUS CEREUS AND PSEUDOMONAS PUTIDA IN PETROLEUM CONTAMINATED-SOIL ON SLURRY-PHASE BIOREACTOR
Jurnal Bahan Alam Terbarukan Vol 6, No 2 (2017): December 2017 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v6i2.11404

Abstract

Pollution by chrysene compounds in the polluted soil of petroleum, due to exploration activities, production and disposal of petroleum waste into the environment causing serious damage to the ecosystem environment, became the target of processing with bacteria as a model of remediation of pollution sites. Thus, the study focused on the use of a bacterial consortium to degrade chrysene in petroleum-contaminated soil. The study was conducted by mixing 20:80 (% wt) of contaminated soil with water. The consortium of Bacillus cereus and Pseudomonas putida 10%(v/v) and 15%(v/v) bacteria with ratios; 2:3; 1:1; 3:2 is inserted into the slurry bioreactor. Biodegradation process is run with agitation of 100 rpm and temperature 26supo/supC – 30supo/supC and in aeration. Identification of chrysene using gas chromatography–mass spectrometry (GCMS) and bacterial populations with haemycitometer. The initial concentration of chrysene is 24.48 ng/μL. After 49 days remediation period for a 10% (v/v) reduced chrysene bacteria consortium and bacterial populations were 8.68 ng/μL; 7.56 ng/μL; and 8.07 ng/μL; with biodegradation rate is 67.01%; 69.10%; And 64.54%. As for the 15% (v/v) bacteria consortium with the same ratio, chrysene was degraded to 2.60 ng/μL; 1.57 ng/μL; and 2.02 ng/μL and the measured chrysene biodegradation rate was 89.39%; 93.58%; And 91.73%. These findings suggest that the percentage of low crude oil is degraded because of the increasing concentration of crude oil.
EKSTRAKSI MINYAK ATSIRI DAUN ZODIA (Evodia suaveolens) DENGAN METODE MASERASI DAN DISTILASI AIR
Jurnal Bahan Alam Terbarukan Vol 3, No 1 (2014): June 2014
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v3i1.3095

Abstract

Daun zodia merupakan tumbuhan yang berpotensi sebagai insektisida nabati. Daun zodia mengandung senyawa aktif limonene yang bersifat neurotoksin terhadap serangga. Pengambilan minyak atsiri daun zodia dilakuan dengan metode maserasi dan metode distilasi air. Pada metode maserasi bahan digunakan etanol dan dimaserasi selama 3x24 jam. Kemudian didistilasi untuk menguapkan pelarut etanol. Untuk metode distilasi air bahan didistilasi selama 3 jam, campuran minyak dan air dipisahkan dengan menambahkan pelarut n-heksana. Kemudian pelarut n-heksana dipisahkan dari minyak atsiri dengan cara direcovery menggunakan alat sokhlet. Minyak atsiri daun zodia yang dihasilkan dianalisis dengan Gas Cromatography-Mass Spectrometry (GC-MS) untuk mengetahui kandungan senyawa kimianya. Hasil percobaan diperoleh randemen minyak atsiri daun zodia dengan metode maserasi sebesar 1,0566% dengan kandungan senyawa limonene 2,6%, sedangkan metode distilasi diperoleh randemen sebesar 0,6471% dengan kandungan senyawa limonene 1,26 %.Zodia leaf is a plant which has a potential to be plant-based insecticide. Zodia leaf has limonene as its active component which is neurotoxin towards insect. The extraction of the essential oil of the zodiac leaf is conducted using maceration method and water distillation method. In the maceration process, the raw material was macerated using ethanol for 72 hours, after that it was distillated to evaporate the ethanol. In the water distillated method, the raw material was distillated for 3 hours, the mixture of water and oil are separated by adding n-hexane solvent. After that, the n-hexane solvent was separated from the essential oil using recovery method using soxhlet. The obtained essential oil of zodia leaf was analyzed using GC-MS to determine its chemical component. The result of the research provides the yield of essential oil of zodiac leaf using maceration method is 1.0566% with limonene component is 2.6%, whereas the distillation method resulted in 0.6471% yield with 1.26% limonene.
THE EXTRACTION OF NATURAL DYES FROM JACKFRUIT WOOD WASTE (Artocarpus Heterophyllus Lamk) WITH WATER SOLVENT BY USING THE MICROWAVE METHOD
Jurnal Bahan Alam Terbarukan Vol 7, No 2 (2018): December 2018 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v7i2.13254

Abstract

Currently, exploration of natural dyes is increasingly being activated and developed, especially to find natural sources of dyes from different plant species and also to develop natural dyestuff extraction process technology for textile applications. During this natural dye extraction process is done by conventional methods that require a long time and a large amount of solvent. Therefore, it is a necessary alternative to the use of "green techniques" are economical in its use. In this research, extraction of Jackfruit wood waste with the microwave by studying the extraction time required to produce the optimum yield and comparing with the conventional method (heat-reflux extraction). Both of these methods use water solvent. On the microwave-assisted extraction, the optimum extraction time at 30 minutes with the acquisition yield of 3.14% (microwave power 400 watt, the ratio of material to solvent 0.02 g/mL). whereas extraction with heat-reflux method showed the optimum extraction time of 180 minutes with a yield of 3.50%. Identification of groups of pigments contained in the Jackfruit wood waste is known categories tannins, flavonoids, and quinones. Fourier Transform Infrared Spectroscopy was used to identify the major chemical groups in the extracted dye. Description of the effects of extraction with microwave and conventional, structural damage shown in a solid surface material using by Scanning Electron Microscopy. Further, to test the application on the fabric dyeing.
SINTESIS BIOADITIF GASOLINE MELALUI KETALISASI GLISEROL MENGGUNAKAN KATALISATOR PADAT
Jurnal Bahan Alam Terbarukan Vol 5, No 2 (2016): December 2016 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v5i2.7431

Abstract

Utilization of glycerol side product from biodiesel as waste management application is required for reduced   negative effect which possible emerged. Glycerol  have three bond of hydroxyde, so its  opportunity  to utilize  to be solketal as bio-additive of gasoline. Indion 225 Na ion exchanger resin is strong acid cation category and low  prices, so  its potency to use alternatively of solid catalyst to get efficient and economic process. The purpose of this research was focussed to search  of the best condition by optimalization indion 225 Na performance as catalyst in glycerol ketalization reaction, by integrated of variables that have effected to reaction for maximize glycerol coversion. To get maximize of reactants molecular interaction and for  optimalization indion 255 Na performance, observation  conducted  in the  range variables which widely enough that were  reactant ratio of 5:1-6:1 mole of acetone mole/mole of glycerol, diameter size  catalyst of  20-40 mesh, catalyst concentration of 3-5% mass of acetone, and reaction temperature of 35-65oC. Result of the research showed that  indion 225 Na catalyst have good performance, by glycerol conversion to reach of 51.89%. Glycerol conversion mentioned was obtained at reactant ratio of 6:1 mole of acetone/mole of gycerol, diameter size catalyst of  40 mesh, catalyst concentration of 4%  mass of acetone, and  reaction temperature of  65oC.
Clove Oil Extraction by Steam Distillation and Utilization of Clove Buds Waste as Potential Candidate for Eco-Friendly Packaging
Jurnal Bahan Alam Terbarukan Vol 9, No 1 (2020): June 2020 [Nationally Accredited - Sinta 2]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v9i1.24935

Abstract

As a tropical country which has abundant of spices, Indonesia is challenged to increase the economic values of spices commodity in raw material form (wet or dry). One way to raise the economic values of these commodities is by modifying into its derivatives. Clove is one of spices commodity which can be processed furthermore into an essential oil. By transforming clove from raw material to essential oil, the economic value increases from 2 to 20 times per kilogram.  In this present research, the extraction time of clove oil using steam hydro distillation is reported. The distillation procedure was conducted in various times, that was in 3, 4, 5, and 6 hours. Furthermore, the clove oil sample that obtained from optimum extraction time was characterized using FTIR and GCMS. Then the result was compared to the commercial clove oil (100 % of purity). In support of sustainability process, then the clove buds waste from steam distillation were challenging to be one of eco-friendly packaging candidates. Two compositions of waste and additional material have been investigated in this study. It found that the best composition was composed of clove buds waste powder: recycled paper (7:3). During the casting process, some additives material was added such as tapioca (20%) and chitosan (1 %) in acid solution in order to improve its mechanical properties. Furthermore, thermal degradability of the eco-friendly packaging was studied. It was started to degrade at 286.58oC. According to this research, the cloves buds’ cardboard was quite potential to be developed as commercial eco-friendly packaging.
BIOKONVERSI SERAT KELAPA SAWIT MENJADI GLUKOSA DENGAN DILUTED-ACID HYDROTHERMAL TREATMENT
Jurnal Bahan Alam Terbarukan Vol 5, No 1 (2016): June 2016 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v5i1.5264

Abstract

Fiber cake (FC) is a one of effluent of Crude Palm Oil (CPO) industry. This effluent can be decreased by using FC for bioethanol production. FC is actually Palm Kernel Press Cake (PKC) a residue of palm oil extraction, which containing 57.9% cellulose and 18% klason lignin, and containing 14.94% hemicellulose. This study aimed to determined the effect of fiber concentrations and reaction time for  glucose production to investigate the structure of morphology and crystalinity of the fiber cake before and after hydrothermal treatment. Fiber cake was treated by hydrothermal reactor using catalysts 2% H2SO4 (v/v) and 150 oC for 2 hour. Variations concentration of fiber cake which is 2.5%; 5%; 7.5%; and 10% w/v and time variations for 1, 2, 3, 4 hours. The highest glucose concentration was found at  2.5% FC for 3 hour about 2.336 ± 0.015 mg/mL. Scanning electron microscope (SEM analysis results and X-Ray Diffraction (XRD) is known the smooth surface structure to be broken an rough after the hydrolysis process and also improvement of the crystal structure of fiber cake from 27.57% to 31.15%.
Antifungal Lotion as Value-Added Product for Harvested BSFL Processing: Simple Process Design and Economic Evaluation
Jurnal Bahan Alam Terbarukan Vol 8, No 2 (2019): December 2019 [Nationally Accredited - Sinta 2]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v8i2.22794

Abstract

Advancing the value of products derived from insect biomass is a potential way to increase the demand of processing insect as renewable and sustainable resources. Among several species of insect, black soldier fly larvae (Hermetia illucens) is promising biomass source because of its favorable characteristics such as easy cultivation, fast-growing, and worldwide distribution. One problem that could limit the development of insect-based bioproduct is the low market price and displeasing uses for edible food. To overcome this problem, value-added product development is necessary to carried out. Thus, establish an antifungal lotion using extracted materials from BSFL biomass was discussed in this report followed by the economic evaluation and sensitivity analysis. The result reveal that equipment availability in market and raw material readiness espouse the production expediency. From the economic aspect, the direct fixed capital cost (DFC) for a plant of this capacity is around US$3.6 million, or approximately 6 times the total equipment cost. Thus, the net profitability will remain stable even the market price of BSFL might fluctuate in the range of 20%. In contrary, the change in main product price was impactful to the rate of return (ROI), internal rate of return (IRR) and, payback time (PBT) value. The overall result suggests that this project is worthy to being built.
PENGARUH SUHU DAN KONSENTRASI RUMEN SAPI TERHADAP PRODUKSI BIOGAS DARI VINASSE
Jurnal Bahan Alam Terbarukan Vol 4, No 1 (2015): June 2015
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v4i1.3767

Abstract

Vinasse merupakan limbah yang dihasilkan oleh produksi bioetanol yang mempunyai kandungan COD (Chemical Oxygen Demand) yang tinggi. Dengan karakteristik tersebut vinasse lebih tepat diuraikan dengan proses anaerob menjadi biogas. Penelitian ini dilakukan untuk mengkaji pengaruh suhu dan perbandingan rumen sapi  yang dibutuhkan untuk mendapatkan biogas dengan hasil yang optimum. Suhu mempengaruhi pertumbuhan mikroorganisme dan kecepatan reaksi dalam pembentukan biogas. Rumen sapi adalah inokulum atau starter yang merupakan bahan yang perlu ditambahkan ke dalam sistem digester biogas. Percobaan dilakukan dalam digester volum 500 ml, dioperasikan pada pH 7 dengan memvariasikan perbandingan suhu,yaitu suhu ruang, suhu 50 oC, dan suhu60 oC dan variasi konsentrasi rumen sapi  5%, 10%, 15%. Proses fermentasi dilakukan dengan cara batch dengan pengukuran gas setiap 2-3 hari menggunakan metode water displacement technique sampai gas tidak terbentuk selama 60 hari. Respon yang diambil pada penelitian ini adalah volume gas yang dihasilkan berdasarkan pengaruh suhu dan konsentrasi rumen sapi terhadap produksi biogas. Perubahan suhu dan konsentrasi rumen sapi sangat mempengaruhi produksi biogas. Hasil yang terbaik dari penelitian ini adalah pada konsentrasi rumen 15% pada suhu ruang yaitu sebanyak 370 ml. Kata kunci: biogas, vinasse, suhu, rumen sapiVinasse is the waste generated by the production of bioethanol which has high content of COD (Chemical Oxygen Demand). With these characteristics, it is more appropriate to convert it into biogas through anaerobic digestion process. This study was conducted to assess the effect of temperature and the cow rumen concentration needed to obtain biogas with optimum results. Temperature affects the growth of microorganisms and speed of reaction in the formation of biogas. The cow rumen was used as inoculum or starter material that needs to be added to the biogas digester system. Experiments conducted in the digester volume of 500 ml, operated at pH 7 with varying the ratio of the temperature, i.e. room temperature, temperature of 50 oC and 60 oC, and variations in the cow rumen concentration of 5%, 10%, 15%. The fermentation process was done in batch condition with gas measurement every 2-3 days using the method of water displacement technique until the gas was not formed for 60 days. Responses were taken in this study is the volume of gas produced by the effect of temperature and concentration of the cow rumen production of biogas. Changes in temperature and concentration greatly affects the cow rumen production of biogas. The best results from this study was obtained from the fermentation with the rumen concentration of 15% at room temperature which was as much as 370 ml.Keywords: biogas, vinasse, the temperature, the cow rumen
KINETIC MODELING OF SERIES REACTION CH4-CH3OH-DME WITH CuO-ZnO/gamma-Al2O3 CATALYST
Jurnal Bahan Alam Terbarukan Vol 7, No 1 (2018): June 2018 [Nationally Accredited]
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/jbat.v7i1.11403

Abstract

A kinetic model was proposed for the synthesis of methane to be dimethyl ether (DME) in one reaction step from (CH4 + O2) and (CH3OH) to dimethyl ether using kinetic CuO-ZnO /gAl2O3 catalyst parameters. The bifunctional catalyst of the series kinetic reaction model according to the experimental results obtained under isothermal conditions in a pipe flow reactor under various operating conditions: 225-325 ° C; 10 bar gauge; Residence time, 16-57.0 (g Catalyst) hour (mole CH4) -1. An important step for modeling is the synthesis of methanol from (CH4 + O2) and the synthesis of (CH3OH to DME) is methanol dehydration (very fast), and water-shifting and CO2 (equilibrium) reactions. The effects of water inhibition and CO2 were also taken into account in the synthesis of methanol and the formation of hydrocarbons. The dehydration advantage of methanol can achieve higher yields above 60 % methanol that was converted to DME and the remaining 5% methanol if (CH4 + O2) comes in at 10 bar gauge and 375 ° C. At higher temperatures produces CO2 and H2O. Methane-methanol-DME series reaction model follows single-order gas phase reaction to methane and methanol with k1 = 0.195 minutes-1 and k2 = 0.115 minutes-1 The time and maximum concentration occurs in the formation of methanol constituents 9.5 minutes and 0.44 mole

Filter by Year

2012 2024


Filter By Issues
All Issue Vol 13, No 1 (2024): June 2024 [Nationally Accredited Sinta 2] Vol 12, No 2 (2023): December 2023 [Nationally Accredited Sinta 2] Vol 12, No 1 (2023): June 2023 [Nationally Accredited - Sinta 2] Vol 11, No 2 (2022): December 2022 [Nationally Accredited - Sinta 2] Vol 11, No 1 (2022): June 2022 [Nationally Accredited - SINTA 2] Vol 10, No 2 (2021): December 2021 [Nationally Accredited - Sinta 2] Vol 10, No 1 (2021): June 2021 [Nationally Accredited - SINTA 2] Vol 9, No 2 (2020): December 2020 [Nationally Accredited - Sinta 2] Vol 9, No 1 (2020): June 2020 [Nationally Accredited - Sinta 2] Vol 8, No 2 (2019): December 2019 [Nationally Accredited - Sinta 2] Vol 8, No 1 (2019): June 2019 [Nationally Accredited - Sinta 2] Vol 7, No 2 (2018): December 2018 [Nationally Accredited] Vol 7, No 1 (2018): June 2018 [Nationally Accredited] Vol 6, No 2 (2017): December 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 6, No 1 (2017): June 2017 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 2 (2016): December 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 5, No 1 (2016): June 2016 [Nationally Accredited] Vol 4, No 2 (2015): December 2015 Vol 4, No 2 (2015): December 2015 Vol 4, No 1 (2015): June 2015 Vol 4, No 1 (2015): June 2015 Vol 3, No 2 (2014): December 2014 Vol 3, No 2 (2014): December 2014 Vol 3, No 1 (2014): June 2014 Vol 3, No 1 (2014): June 2014 Vol 2, No 2 (2013): December 2013 Vol 2, No 2 (2013): December 2013 Vol 2, No 1 (2013): June 2013 Vol 2, No 1 (2013): June 2013 Vol 1, No 2 (2012): December 2012 Vol 1, No 2 (2012): December 2012 Vol 1, No 1 (2012): June 2012 Vol 1, No 1 (2012): June 2012 More Issue