cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 524 Documents
Impact of Testing Temperature on the Structure and Catalytic Properties of Au Nanotubes Composites Anastassiya A. Mashentseva; Maxim V. Zdorovets; Daryn B. Borgekov
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (655.88 KB) | DOI: 10.9767/bcrec.13.3.2127.405-411

Abstract

In the paper, the catalytic activity of composites based on gold nanotubes and ion track membranes was studied using bench reaction of the p-nitrophenol (4-NP) reduction in the temperature range of 25-40 °C. The efficiency of the prepared catalysts was estimated on the rate constant of the reaction and by conversion degree of 4-NP to p-aminophenol (4-AP). The comprehensive evaluation of the structure was performed by X-ray diffraction and scanning electron microscopy. A decreasing of the composites activity was observed when the reaction were carried out at the temperature over 35 °C, due to an increased average crystallite size from 7.31±1.07 to 10.35±3.7 nm (after 1st run). In temperature range of 25-35 °C the efficiency of the composite catalyst was unchanged in 3 runs and decreases by 24-32 % after the 5th run. At the high temperature of 40 °C after the 5th run the composite become completely  catalytically inert. 
Fischer-Tropsch Synthesis over Unpromoted Co/ɣ-Al2O3 Catalyst: Effect of Activation with CO Compared to H2 on Catalyst Performance Phathutshedzo Rodney Khangale; Reinout Meijboom; Kalala Jalama
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (588.815 KB) | DOI: 10.9767/bcrec.14.1.2519.35-41

Abstract

The effect of activating Co/Al2O3 catalyst by diluted CO or H2 on catalyst performance for Fischer-Tropsch reaction was investigated. The catalyst was prepared by incipient wetness impregnation of the support and characterized using BET N2 physisorption, SEM, and XRD analyses. The reduction behavior of the catalyst in presence of CO and H2 individually was evaluated using TPR analyses. The data reveal that CO activates Co/Al2O3 catalyst at a lower temperature than H2 and produces a catalyst with higher rate for liquid product formation. It also leads to higher methane selectivity probably due to some cobalt carbide formation. 
Highly Sensitive Electrocatalytic Determination of Formaldehyde Using a Ni/Ionic Liquid Modified Carbon Nanotube Paste Electrode Ebrahim Zarei; Mohammad Reza Jamali; Farideh Ahmadi
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (769.271 KB) | DOI: 10.9767/bcrec.13.3.2341.529-542

Abstract

In this study, ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was applied as additives to fabricate a novel ionic liquid/carbon nanotube paste electrode (IL/CNPE). This electrode was characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Results showed that the electron transfer rate and reversibility of the electrode were increased by the ionic liquid. The morpho-logy of prepared IL/CNPE was studied by scanning electron microscopy. Nickel/ionic liquid modified carbon nanotube paste electrode (Ni/IL/CNPE) was also constructed by immersion of the IL/CNPE in nickel sulfate solution. Ionic liquid showed significant effect on the accumulation of nickel species on the surface of the electrode. Also, the values of electron transfer coefficient, charge-transfer rate constant and electrode surface coverage for Ni(II)/Ni(III) redox couple of the Ni/IL/CNPE were found to be 0.32 and 2.37×10-1 s-1 and 2.74×10-8 mol.cm-2, respectively. The Ni/IL/CNPE was applied successfully to highly efficient electrocatalytic oxidation of formaldehyde in alkaline medium. The effects of various factors on the efficiency of electrocatalytic oxidation of formaldehyde were optimized. Under the optimized condition, cyclic voltammetry of formaldehyde at the modified electrode exhibited two linear dynamic ranges in the concentration ranges of 7.00×10-6 to 9.60×10-5 mol.L-1 and 9.60×10-5 to 32.00×10-3 mol.L-1 with excellent detection limit of 9.50×10-7 mol.L-1 (3σ/slope), respectively. Also, the method was successfully applied for formaldehyde measurement in real sample. 
An Efficient Synthesis of 1,8-Dioxo-Octahydroxanthenes Derivatives Using Heterogeneous Ce-ZSM-11 Zeolite Catalyst Rameshwar R. Magar; Ganesh T. Pawar; Sachin P. Gadekar; Machhindra Karbhari Lande
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (107.633 KB) | DOI: 10.9767/bcrec.13.3.2062.436-446

Abstract

The Ce-ZSM-11 zeolite has been used as an efficient catalyst for the one pot synthesis of 1,8-dioxo-octahydroxanthene derivatives from aromatic aldehyde and 5,5-dimethyl-cyclohexane-1,3-dione under reflux condition. The catalyst was characterized by Powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmer-Teller (BET) surface area analysis, and Temperature Programmed Desorption (TPD) techniques. This method provides several advantageous such as use of inexpensive catalyst, simple work-up procedure, high yield of desired product and reusability of catalyst. 
A Green Synthesis of Polylimonene Using Maghnite-H+, an Exchanged Montmorillonite Clay, as Eco-Catalyst Hodhaifa Derdar; Mohammed Belbachir; Amine Harrane
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (492.834 KB) | DOI: 10.9767/bcrec.14.1.2692.69-78

Abstract

A new green polymerization technique to synthesis polylimonene (PLM) is carried out in this work. This technique consists of using Maghnite-H+ as eco-catalyst to replace Friedel-Crafts catalysts which are toxics. Maghnite-H+ is a montmorillonite silicate sheet clay which is prepared through a simple exchange process. Polymerization experiments are performed in bulk and in solution using CH2Cl2 as solvent. Effect of reaction time, temperature and amount of catalyst is studied, in order to find the optimal reaction conditions. The polymerization in solution leads to the best yield (48.5%) at -5°C for a reaction time of 6 h but the bulk polymerization, that is performed at 25°C, remains preferred even if the yield is lower (40.3%) in order to respect the principles of a green chemistry which recommend syntheses under mild conditions, without solvents and at room temperature. The structure of the obtained polymer (PLM) is confirmed by FT-IR and Nuclear Magnetic Resonance of proton (1H-NMR). The glass transition temperature (Tg) of the polylimonene is defined using Differential Scanning Calorimetry (DSC) and is between 113°C and 116°C. The molecular weight of the obtained polymer is determined by Gel Permeation Chromatography (GPC) analysis and is about 1360 g/mol. Copyright © 2019 BCREC Group. All rights reserved 
Effect of Incorporating TiO2 Photocatalyst in PVDF Hollow Fibre Membrane for Photo-Assisted Degradation of Methylene Blue Norashima Abdullah; Bamidele Victor Ayodele; Wan Nurdiyana Wan Mansor; Sureena Abdullah
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (644.076 KB) | DOI: 10.9767/bcrec.13.3.2909.588-591

Abstract

A rapid growth in populations, living standards and industries has become a key contribution to water pollution. Clean water is an important resource for life, sustainable development and ecosystems. This study therefore investigates the photocatalytic degradation of an organic pollutant (methylene blue) using PVDF/TiO2 membrane. The main objective of the study is to determine the synergistic effect of incorporating TiO2 photocatalyst into the PVDF membrane on the mineralization of the organic pollutants. The TiO2 photocatalyst was characterized using Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM), Brunauer, Emmettt, and Teller (BET), and X-ray Diffraction (XRD) techniques. While the fabricated PVDF/TiO2 hollow fibre membranes were then characterized by scanning electron microscopy (SEM) and contact angle. The performance of the membrane was evaluated by photodegradation of methylene blue. The degradation study revealed that both the undoped PVDF and the TIO2 doped PVDF membrane were capable of degrading methylene blue. The performance of the membrane can be ranked as follows 9 wt% TiO2/PVDF > 6 wt% TiO2/PVDF > 3 wt% TiO2/PVDF > undoped PVDF showing the synergistic effect of incorporating the TiO2 photocatalyst into the PVDF membrane.  The kinetics data of obtained from the rate of degradation of the methylene blue fitted well into first order kinetic data with apparent kinetic constants of 0.0591, 0.0295, 0.0188, and 0.0100 obtained using pure membrane, undoped PVDF, 3 wt% TiO2/PVDF, 6 wt% TiO2/PVDF, and 9 wt% TiO2/PVDF, respectively.
Enhanced Visible-Light-Driven Photocatalytic Activity of ZnAl Layered Double Hydroxide by Incorporation of Co2+ Deyang Li; Lihui Fan; Min Qi; Yanming Shen; Dongbin Liu; Shifeng Li
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (630.276 KB) | DOI: 10.9767/bcrec.13.3.2168.502-511

Abstract

Co-doped ZnAl layered double hydroxides (LDH) were papered by coprecipitation. The prepared samples were characterized by multiple techniques including X-ray Diffraction (XRD), Brunauer−Emmett−Teller (BET) surface area, Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and UV−Vis Diffuse-Reflectance Spectroscopy (UV−Vis DRS). The incorporation of Co2+ into the ZnAl LDH sheets as CrO6 octahedron forms a new  energy level which contributes for the excitation of electrons under visible light. The doped Co2+ at a reasonable content also serves as photo-generated charges separator and improves the visible light photocatalytic activity of ZnAl LDH. A degradation mechanism based on the hydroxyl radical as the active species was proposed. 
Preparation of Metal-Free Nitrogen-Doped Carbon Material and Its Catalytic Performance Xuan Wang; Lei Yang; Ke-ying Cai; Ying Mei Zhou; Peng Wang; Ming Song
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (16.896 KB) | DOI: 10.9767/bcrec.14.1.2593.105-111

Abstract

Nitrogen-doped carbon materials (NCMs) were prepared via hydrothermal treatment together with pyrolysis under nitrogen atmosphere by using melamine as nitrogen source and sucrose as carbon source. The NCMs were characterized by X-ray diffraction (XRD), laser Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that nitrogen species were successfully doped into NCMs in the formation of pyridinic N, pyrrolic N, graphitic N, and oxidized N. With the temperature of pyrolysis increasing, the total amount of nitrogen species decreased, while the proportion of graphitic N increased. The catalytic performance was investigated by the reduction of p-nitrophenol with excessive KBH4 at 30 ℃. The reaction rate constant can reach 1.06 min-1 for NCM-800. The NCM-800 has good stability, which can be used for 8 cycles without obvious deactivation. 
Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution Mukhamad Nurhadi; Iis Intan Widiyowati; Wirhanuddin Wirhanuddin; Sheela Chandren
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1528.636 KB) | DOI: 10.9767/bcrec.14.1.2548.17-27

Abstract

The evaluation of kinetic adsorption process of sulfonated carbon-derived from Eichhornia crassipes in the adsorption of methylene blue dye from aqueous solution has been carried out. The sulfonated carbon-derived from E. crassipes (EGS-600) was prepared by carbonation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation with concentrated sulfuric acid for 3 h. The physical properties of the adsorbents were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption studies. Adsorption study using methylene blue dye was carried out by varying the contact time and initial dye concentration for investigated kinetics adsorption models. The effect of varying temperature was used to determine the thermodynamic parameter value of ΔG, ΔH, and ΔS. The results showed that the equilibrium adsorption capacity was 98% when EGS-600 is used as an adsorbent. The methylene blue dye adsorption onto adsorbent takes place spontaneity and follows a pseudo-second-order adsorption kinetic model. 
The Effect of Aluminum Source on Performance of Beta-Zeolite as a Support for Hydrocracking Catalyst Mina Hadi; Hamid Reza Aghabozorg; Hamid Reza Bozorgzadeh; Mohammad Reza Ghasemi
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (570.975 KB) | DOI: 10.9767/bcrec.13.3.2570.543-552

Abstract

In this paper, three different kinds of aluminum sources (sodium aluminate, aluminum sulfate and aluminum isopropylate) were used for preparing of nano beta-zeolite. The as synthesized zeolites were mixed with the as prepared amorphous silica-alumina to produce the supports for hydrocracking catalyst. The prepared supports were used for preparation of NiMo/silica alumina-nano beta-zeolite by impregnation method. The influence of the aluminum source for preparation of beta-zeolite on the performance of the prepared catalysts has been studied. The samples were thoroughly characterized by X-Ray diffraction method (XRD), field emission-scanning electron microscopy (FE-SEM), N2 adsorption-desorption isotherms (BET), temperature programmed desorption (TPD) and temperature programmed reduction (TPR) methods. The catalysts performance was evaluated by vacuum gas oil (VGO) hydrocracking at 390 oC in a fixed bed reactor. The XRD patterns showed that the beta-zeolite samples obtained from the present methods were pure and highly crystalline and the crystal size of the prepared zeolites were in nanometer scale. Crystallite size of nano beta-zeolite synthesized by aluminum isopropylate [Al(iPrO)3] was smaller than those of prepared by the other aluminum sources. The catalyst containing this zeolite with higher surface area (231 m2/g) and more available acid sites (1.66 mmol NH3/g) possessed higher activity and selectivity to gas oil (71.9 %). 

Page 8 of 53 | Total Record : 524


Filter by Year

2016 2023