cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Indonesian Journal of Biotechnology
ISSN : 08538654     EISSN : 20892241     DOI : -
Core Subject : Science,
The Indonesian Journal of Biotechnology (IJBiotech) is an open access, peer-reviewed, multidisciplinary journal dedicated to the publication of novel research in all aspects of biotechnology, with particular attention paid to the exploration and development of natural products derived from tropical—and especially Indonesian—biodiversity. IJBiotech is published biannually and accepts original research articles featuring well-designed studies with clearly analyzed and logically interpreted results. A strong preference is given to research that has the potential to make significant contributions to both the field of biotechnology and society in general.
Arjuna Subject : -
Articles 523 Documents
New sources of papain: SEM and SDS‐PAGE analysis to determine the natural tenderizer from papaya latex and senesced leaves Aprilia Indra Kartika; Hapsari Sulistya Kusuma; Sri Darmawati
Indonesian Journal of Biotechnology Vol 27, No 3 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.66434

Abstract

This study aims to determine the effectiveness of papaya‐fruit latex and yellow‐senesced leaves as a natural and organic tenderizer. The fruit and leaves of the plant were ground to powder, while 0 g, 10 g, 15 g and 20 g variations were used to cover 50 g of meat for 4 h. Subsequently, the Bradford and Kjeldahl methods were used to determine the protein content, while the protein profile was analyzed using SDS‐PAGE and confirmed using a Scanning Electron Microscope (SEM). The results showed that the protein concentration in mutton after fruit latex treatment was 41%, which was higher than the concentration of beef at 29.86%. Furthermore, the beef lost protein bands and its molecular weight fell from 225 kDa to 86 KDa, while the mutton experienced a reduction from 100 kDa to 65 kDa, which was significantly smaller than for raw meat. A single protein band was also observed at 21.6 kDa in the sample, indicating the presence of papain enzyme protein. Meanwhile, the SEM results showed that collagen and myofibril in the muscles were damaged in the treated meats. Based on these results, treatment with papaya fruit latex and yellow papaya leaves increases the tenderness of meat.
Establishment of transgenic potato cultivar IPB CP1 plants containing gene encoding for superoxide dismutase to increase the abiotic stress tolerance Musawira Musawira; Suharsono Suharsono; Miftahudin Miftahudin; Aris Tjahjoleksono
Indonesian Journal of Biotechnology Vol 27, No 3 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.68040

Abstract

Potato ( Solanum tuberosum L.) cultivar IPB CP1 is suitable as a raw material for the potato chip industry. Potato plants are sensitive to various abiotic stresses such as drought, aluminium and salinity, which induce reactive oxygen species (ROS). ROS is very toxic to plant cells. Superoxide dismutase (SOD) is one of the enzymes that catalyse ROS to H2O2 and O2. This study aimed to establish transgenic potato cv. IPB CP1 plants containing the MmCuZn‐SOD gene that are tolerant to various abiotic stresses. Genetic transformation using internodes without buds as explants produced putative transgenic potato with a transformation efficiency of 51.25% and a regeneration efficiency of 38.87%. Integration analysis of the MmCuZn‐SOD transgene in putative transgenic plants by polymerase chain reaction (PCR) with a set of specific primers showed that eight plants contained the MmCuZn‐SOD gene under the control of the 35S CaMV promoter. In vitro salinity stress, aluminium stress, and drought stress assays showed that transgenic plants had a higher number of roots and total root length than non‐transgenic ones. These results indicate that transgenic potato cv. IPB CP1 plants are more tolerant to abiotic stresses than non‐transgenic ones.
Characterization of the urogenital microbiome in patients with urinary tract infections Fitri Nadifah; Wayan Tunas Artama; Budi Setiadi Daryono; Endah Retnaningrum
Indonesian Journal of Biotechnology Vol 27, No 3 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.69212

Abstract

Standard microbiological culture techniques can only identify a fraction of the urogenital microbiome. Meanwhile, identifying and characterizing infectious microorganisms are very important for the success of diagnosis and treatments, especially for Urinary Tract Infection (UTI) patients. This study aimed to characterize the urogenital microbiome of UTI patients using 16S rRNA gene sequencing. We sequenced two pooled DNA samples from voided urine of UTI patients (21 females and 13 males). To determine the structure and composition of taxa in the samples, 16S rRNA gene sequencing was performed using the Illumina Mi‐Seq paired‐end platform. The most abundant genera were Burkholderia‐Caballeronia‐Paraburkholderia (71%) followed by Prevotella (33%), Escherichia‐Shigella (24%), Klebsiella (23%) and Sneathia (10%). The female microbiome was dominated by Prevotella bivia (28%), Escherichia coli (24%), Sneathia sanguinegens (7%) and Klebsiella pneumoniae (4%). On the other hand, the male microbiome was dominated by K. pneumoniae (23%) and E. coli (2%). K. pneumoniae and E. coli were the most abundant species found in both microbiomes. The 16S rRNA gene sequencing used in this study successfully uncovered the composition of the urogenital microbiome, which might not have been possible with conventional culture methods.
The efficacy of captopril and 5-fluorouracil combination in the proliferation and collagen deposition of keloid fibroblast Jesslyn Amelia; Yohanes Widodo Wirohadidjojo; Agnes Sri Siswati
Indonesian Journal of Biotechnology Vol 27, No 3 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.69505

Abstract

Keloid is a benign fibroproliferative tissue growth that exceeds the initial wound margins. Captopril has been tested in vitro to reduce fibroblast proliferation and collagen deposition; thus, it has potential for use in the treatment of keloids. Meanwhile, 5‐fluorouracil (5‐FU) has already been used in keloid management. This study aimed to determine the efficacy of the combination of captopril and 5‐FU in keloid fibroblast cultures. Keloid tissues were cultured up to passages 4–7. The study consisted of a control group, captopril in various concentrations (10‐2, 10‐3, 10‐4, and 10‐5 mol/L), 5‐FU 1 mg/mL and a combination of captopril at various concentrations with 5‐FU 1 mg/mL. After 144 hours of treatment, fibroblast proliferation and collagen deposition were measured. The study showed a significant decrease in the mean index of fibroblast proliferation and collagen deposition in the group receiving captopril in various concentrations (10‐2, 10‐3, 10‐4, and 10‐5 mol/L) and the 5‐FU group against the control group (p<0.05). In the combined‐dose group, captopril at a concentration of 10‐2 mol/L and 5‐FU showed a significant reduction in fibroblast proliferation and collagen deposition compared to the 5‐FU group and the captopril at the same dose (p<0.05). In conclusion, the combination of captopril 10‐2 mol/L and 5‐FU 1 mg/mL is better at reducing fibroblast proliferation and collagen deposition in keloid fibroblast cultures than captopril or 5‐FU as a single therapeutic agent.
The effectivity of thidiazuron and 1‐naphthaleneacetic acid on somatic embryo induction in transgenic Dendrobium phalaenopsis Fitzg. carrying 35S::GR::AtRKD4 Muhammad Ilham; Fitriana Puspitasari; Endang Semiarti
Indonesian Journal of Biotechnology Vol 27, No 3 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.70833

Abstract

Dendrobium phalaenopsis Fitzg. (also known as the Larat orchid) is an endemic orchid from Larat Island, Eastern Indonesia. Its beautiful flowers mean that many plants are taken for commercial purposes, leading to the rapid decline of populations in their natural habitats. The objectives of this study were to determine which organs of the transgenic Larat orchid carrying the 35S::GR::AtRKD4 construct, together with which concentrations of the plant growth regulators (PGRs) auxin and cytokinin, are suitable for the induction of somatic embryos (SEs). In this study, the AtRKD4 gene in Larat orchids was confirmed using PCR with specific primers for the AtRKD4 and HPT genes. Thidiazuron (TDZ) (1, 3 and 5 mg/L) in combination with 1‐naphthaleneacetic acid (NAA) (0.5 and 1 mg/L) were used on new phalaenopsis (NP) medium to induce SEs from leaves, pseudobulbs and roots. The AtRKD4 transgenes were detected as being stably integrated into the DNA genome of transformant plants using specific primers for AtRKD4 and HPT genes, and positive results were obtained using actin gene primers as internal controls for PCR. Pseudobulbs produced 19 to 20 SEs from 108 pseudobulb explants (89–100%), a higher number than produced in explants of the other organs studied. Among the PGR treatments, the best results were obtained in NP medium supplemented with a combination of 1 mg/L TDZ and 1 mg/L NAA, 100% of the explants of which produced SEs (2.11 ± 1.36). No significant difference was found between the morphology of the SEs produced from the non‐transformant Larat orchid pseudobulb explants and the 35S::AtRKD4 carrier transformant.
Early development of self‐administered COVID‐19 rapid test based on nucleocapsid detection in saliva sample Siti Soidah; Toto Subroto; Sari Syahruni; Fauzian Giansyah; Henry Chandra; Dhiya Salsabila; Bachti Alisjahbana; Nisa Fauziah; Hesti Lina Wiraswati; Leonardus Wiydatmoko; Basti Andriyoko; Anita Yuwita; Muhammad Yusuf
Indonesian Journal of Biotechnology Vol 27, No 3 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.72269

Abstract

More than 6,000,000 people have died due to the coronavirus (COVID‐19) pandemic. This disease spread quickly due to its highly contagious nature. The SARS‐CoV‐2 virus that causes the disease can be transmitted through saliva droplets secreted by infected people at a distance of less than 1 m. As a result, saliva has been accepted as an alternative specimen for COVID‐19 detection by the Centers for Disease Control and Prevention (CDC). Furthermore, WHO recommended the use of rapid antigen tests based on lateral flow immunoassay when reverse transcription‐polymerase chain reaction (RT‐PCR) is not available. We developed a saliva‐based rapid antigen test by optimizing the antibody concentration and optimum pH for the conjugation of antibody and gold nanoparticles. We found that the best running buffer formulation consisted of 75 mM sodium phosphate buffer, 1% NaCl, 1% Triton X‐100, 0.5% N‐acetyl‐L‐cysteine, and 0.02% sodium azide. The addition of a mucolytic agent in the buffer can reduce the viscosity of saliva, thus improving sensitivity. The rapid test developed detected the lowest concentration of nucleocapsid protein at 0.1 μg/mL. Our study revealed 100% specificity against negative COVID‐19 saliva and no cross‐reaction with avian influenza virus hemagglutinin.
Hypoxic mesenchymal stem cell‐conditioned medium accelerates wound healing by regulating IL‐10 and TGF‐β levels in a full‐thickness‐wound rat model Adi Muradi Muhar; Faizal Mukharim; Dedy Hermansyah; Agung Putra; Nurul Hidayah; Nur Dina Amalina; Iffan Alif
Indonesian Journal of Biotechnology Vol 27, No 4 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.63914

Abstract

Full‐thickness wound healing is a complex process requiring a well‐orchestrated mechanism of various factors, including cytokines, particularly interleukin (IL)‐10 and transforming growth factor (TGF)‐β. IL‐10 and TGF‐β act as robust anti‐inflammatory cytokines in accelerating the wound healing process by regulating myofibroblasts. Hypoxic mesenchymal stem cell‐conditioned medium (hypMSC‐CM) containing cytokines potentially contribute to accelerate wound repair without scarring through the paracrine mechanism. This study aims to observe the role of hypMSC‐CM in controlling TGF‐β and IL‐10 levels to accelerate full‐thickness wound repair and regeneration. A total of 24 male Wistar rats were used in this study. Six healthy rats as a sham group and 18 rats were created as full‐thickness‐wound animal models using a 6 mm punch biopsy. The animals were randomly assigned into three groups (n = 6) consisting of two treatment groups treated with hypMSC‐CM at a low dose (200 µL hypMSC‐CM with 2 g water‐based gel added) and a high dose (400 µL hypMSC‐CM with 2 g water‐based gel added) and a control group (2 g water‐based gel only). The IL‐10 and TGF‐β levels were examined by ELISA. The results showed a significant increase in IL‐10 levels on day 3 after hypMSC‐CM treatment, followed by a decrease in platelet‐derived growth factor (PDGF) levels on days 6 and 9. In line with this finding, the TGF‐β levels also increased significantly on day 3 and then linearly decreased on days 6 and 9. HypMSC‐CM administra‐ tion may thus promote wound healing acceleration by controlling IL‐10 and TGF‐β levels in a full‐thickness‐wound rat model.
Pantoea agglomerans, Klebsiella pneumoniae, and Shigella flexneri isolated from the Cisadane River as multiresistant bacteria to copper and dyes Wahyu Irawati; Candra Yulius Tahya; Greisnaningsi Greisnaningsi
Indonesian Journal of Biotechnology Vol 27, No 4 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.66103

Abstract

Copper pollution in Cisadane is a serious environmental issue that needs to be resolved immediately due to its negative impacts on river ecosystems. Bioremediation utilising indigenous bacteria offers excellent potential to restore copper‐contaminated river water. This study aimed to obtain indigenous copper‐resistant bacteria isolated from the Cisadane River as copper bioremediation agents. Bacteria from Cisadane River water samples were isolated by the spread plate method on Luria Bertani medium containing 3 mM CuSO4. Resistance was determined based on the minimum inhibitory concentration value, while copper concentration was measured using an atomic absorption spec‐ trophotometer. The results presented a total of 13 bacterial isolates with a minimum inhibitory concentration of up to 8 mM CuSO4. Sequence alignment analysis was performed on three selected copper‐resistant bacteria, i.e. isolate IrCis1, IrCis4 and IrCis13, which were identified as Pantoea agglomerans, Klebsiella pneumoniae and Shigella flexneri based on 16S rRNA, respectively. Each isolate accumulated copper at 1.19 mg, 1.34 mg and 0.92 mg/g DW of cells, with copper biosorption potentials of 73.74%, 70.17% and 67.73%, respectively. In conclusion, P. agglomerans strain IrCis1, K. pneu‐ moniae strain IrCis4 and S. flexneri strain IrCis5 isolated from the Cisadane River can be used as copper bioremediation agents.
Effect of galangal essential oils on rumen microbial population and biodiversity on in vitro rumen fermentation Dewi Ratih Ayu Daning; Budi Prasetyo Widyobroto; Lies Mira Yusiati; Chusnul Hanim
Indonesian Journal of Biotechnology Vol 27, No 4 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.66680

Abstract

The study aimed to evaluate the effect of administering galangal essential oil (EO) on the abundance of rumen bacteria using the 16s rRNA method. The treatments included a control (no EO addition), galangal EO (30, 60, 120 µL), and cineole (5 µL). The treatments were assessed using a 48‐hour in vitro batch culture of rumen fluid containing a 60:40 ratio of forage to concentrate. For amplification of the prokaryotes (bacteria and archaea) in region V4, 16s rRNA primer 5’GTGCCAGCMGCCGCGTAA, GGACTACHVGGGTWTCTAAT3’ was employed. The data for rumen microbial abundance were analysed descriptively, while the data for rumen microbial diversity were obtained from the report on the Next Generation Sequencing Method. The microbial composition of each sample was tested for operational taxonomic units (OTUs) with a 97% identity rate on a valid label. The 16S rRNA gene sequencing yielded a total of 3,977 OTUs. Adding galangal and cineole EOs resulted in the same variation of the Shannon index. The population index (chao1 index) was highest when 60 µL of galangal EO was added, compared to 30 and 120 µL of galangal EO and cineole. In addition, providing 60 µL of galangal EO decreased the abundance of Prevotella ruminicola compared to the control and cineole doses. The addition of galangal EO also led to a decline in the number of Methanobacteriales. The population of the fibre‐degrading bacteria group (Ruminococcus albus and Ruminococcus flavefaciens) was higher in a dose of galangal EO than the control and cineole. Therefore, it can be concluded that the effective dose of galangal EO, i.e. 60 µL/300 mg (DM feed) in vitro, can reduce the abundance of Prevotella bacteria and methanogens.
Anti‐diabetic effect of andrographolide from Sambiloto herbs (Andrographis paniculata (Burm.f.) Nees) through the expression of PPARγ and GLUT‐4 in adipocytes Novia Tri Astuti; Putri Rachma Novitasari; Raymond Tjandrawinata; Agung Endro Nugroho; Suwijiyo Pramono
Indonesian Journal of Biotechnology Vol 27, No 4 (2022)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijbiotech.68800

Abstract

Andrographolide has been shown to have a pharmacological effect as an antidiabetic. Nevertheless, the comprehensive mechanism of action has yet to be determined. Andrographolide is a primary component of the sambiloto herb (Andrographis paniculata (Burm.f.) Nees), in which a simple isolation process can obtain high yields. This study aimed to explain the anti‐diabetic effect of andrographolide compared to pioglitazone (a positive control) on glucose uptake by measuring the expression levels of peroxisome proliferator‐activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT‐4) genes in 3T3‐LI mouse adipocytes as an in vitro model. The differentiation of mature adipocytes from 3T3‐L1 fibroblasts was induced with 3‐isobutyl‐1‐methylxanthine, dexamethasone, and insulin. Andrographolide was provided through direct isolation from A. paniculata herbs. The gene expression was detected using the reverse transcription‐polymerase chain reaction (RT‐PCR). Pioglitazone and andrographolide significantly increased glucose uptake capability. Andrographolide was able to increase the mRNA levels of PPARγ and GLUT‐4 compared to pioglitazone with the best concentration at 5.6 µM. In conclusion, andrographolide can improve glucose uptake by increasing mRNA levels of PPARγ and GLUT‐4 that encodes protein, which are key factors for glucose homeostasis. Therefore, this finding further establishes the potency of andrographolide from A. paniculata as an antidiabetic.

Filter by Year

2005 2025