cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surabaya,
Jawa timur
INDONESIA
Journal of Information Systems Engineering and Business Intelligence
Published by Universitas Airlangga
ISSN : -     EISSN : -     DOI : -
Core Subject : Science,
Jurnal ini menerima makalah ilmiah dengan fokus pada Rekayasa Sistem Informasi ( Information System Engineering) dan Sistem Bisnis Cerdas (Business Intelligence) Rekayasa Sistem Informasi ( Information System Engineering) adalah Pendekatan multidisiplin terhadap aktifitas yang berkaitan dengan pengembangan dan pengelolaan sistem informasi dalam pencapaian tujuan organisasi. ruang lingkup makalah ilmiah Information Systems Engineering meliputi (namun tidak terbatas): -Pengembangan, pengelolaan, serta pemanfaatan Sistem Informasi. -Tata Kelola Organisasi, -Enterprise Resource Planning, -Enterprise Architecture Planning, -Knowledge Management. Sistem Bisnis Cerdas (Business Intelligence) Mengkaji teknik untuk melakukan transformasi data mentah menjadi informasi yang berguna dalam pengambilan keputusan. mengidentifikasi peluang baru serta mengimplementasikan strategi bisnis berdasarkan informasi yang diolah dari data sehingga menciptakan keunggulan kompetitif. ruang lingkup makalah ilmiah Business Intelligence meliputi (namun tidak terbatas): -Data mining, -Text mining, -Data warehouse, -Online Analytical Processing, -Artificial Intelligence, -Decision Support System.
Arjuna Subject : -
Articles 246 Documents
Analysis of Emoticon and Sarcasm Effect on Sentiment Analysis of Indonesian Language on Twitter Debby Alita; Sigit Priyanta; Nur Rokhman
Journal of Information Systems Engineering and Business Intelligence Vol. 5 No. 2 (2019): October
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2983.476 KB) | DOI: 10.20473/jisebi.5.2.100-109

Abstract

Background: Indonesia is an active Twitter user that is the largest ranked in the world. Tweets written by Twitter users vary, from tweets containing positive to negative responses. This agreement will be utilized by the parties concerned for evaluation.Objective: On public comments there are emoticons and sarcasm which have an influence on the process of sentiment analysis. Emoticons are considered to make it easier for someone to express their feelings but not a few are also other opinion researchers, namely by ignoring emoticons, the reason being that it can interfere with the sentiment analysis process, while sarcasm is considered to be produced from the results of the sarcasm sentiment analysis in it.Methods: The emoticon and no emoticon categories will be tested with the same testing data using classification method are Naïve Bayes Classifier and Support Vector Machine. Sarcasm data will be proposed using the Random Forest Classifier, Naïve Bayes Classifier and Support Vector Machine method.Results: The use of emoticon with sarcasm detection can increase the accuracy value in the sentiment analysis process using Naïve Bayes Classifier method.Conclusion: Based on the results, the amount of data greatly affects the value of accuracy. The use of emoticons is excellent in the sentiment analysis process. The detection of superior sarcasm only by using the Naïve Bayes Classifier method due to differences in the amount of sarcasm data and not sarcasm in the research process.Keywords:  Emoticon, Naïve Bayes Classifier, Random Forest Classifier, Sarcasm, Support Vector Machine
Penerapan Framework Yii dalam Pembangunan Sistem Informasi Asrama Santri Pondok Pesantren sebagai Media Pencarian Asrama Berbasis Web Erliyah Nurul Jannah; Mukhammad Masrur; Siti Asiyah
Journal of Information Systems Engineering and Business Intelligence Vol. 1 No. 2 (2015): October
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (722.62 KB) | DOI: 10.20473/jisebi.1.2.49-58

Abstract

Abstrak— Kebutuhan akan penggunaan teknologi informasi di era modern ini memang sudah tak terelakkan lagi. Hal ini terjadi di berbagai instansi, tak terkecuali di pondok pesantren. Di sebagian besar pondok pesantren, banyak wali santri mengalami kesulitan dalam memilih asrama yang sesuai untuk putra putrinya ketika tahun ajaran baru. Hal ini terjadi karena banyaknya pilihan asrama yang disediakan oleh pondok pesantren. Asrama tersebut bervariasi mulai dari sisi biaya, fasilitas asrama, dan kegiatan asrama. Oleh sebab itu perlu dibuat suatu Sistem Informasi Asrama (SIRAMA) agar dapat membantu wali santri dalam mencari asrama yang paling sesuai dengan kriteria dan kebutuhan putra-putrinya. SIRAMA merupakan aplikasi berbasis web yang berfungsi sebagai media informasi tentang asrama di pondok pesantren. Informasi tersebut meliputi biaya awal masuk asrama, biaya perbulan, fasilitas asrama, dan jadwal kegiatan asrama. SIRAMA dibangun dengan metode waterfall dan dikembangkan menggunakan PHP Framework Yii. Setelah dilakukan pengujian dengan metode Black-box dan pengujian User Acceptance, dapat disimpulkan bahwa SIRAMA yang dibangun dengan framework Yii dapat menampilkan asrama yang sesuai dengan kriteria dari pengguna yaitu santri atau wali santri. SIRAMA juga dapat diterima dengan sangat baik oleh pengguna. Kata Kunci— Sistem Informasi Asrama, Pondok Pesantren, Pencarian Asrama, Framework YiiAbstract— The need of information technology in the modern era is inevitable. It occurs in most of institutions, including the Islamic Boarding School. Parents of Islamic Boarding School students have difficulty in choosing a proper dorm for their child in new academic year. This happens because there are many choices provided by the boarding school. The dormitories vary in terms of cost, facilities, and activities of the dorm. Therefore, it is necessary to build a Dorm Information Systems (SIRAMA) to assist  parents and students in searching a dormitory that best meets their criteria. SIRAMA is a web-based application that serves as an information media about the dormitory at boarding school. The information consists of the initial cost of dormitory entrance, monthly fees, boarding facilities, and schedule activities of the dorm. SIRAMA is developed using waterfall model, implemented using PHP Yii framework as the programming language, and tested with black-box testing and user acceptance testing. The result shows that SIRAMA is capable to recommend a list of dormitories that meets the students or parents’ criteria. SIRAMA is also very well accepted by the users. Keywords— Dormitory Information Systems, Islamic Boarding School, Dormitory Search, Framework Yii
Analyzing E-Commerce Success using DeLone and McLean Model Ruth Johana Angelina; Aji Hermawan; Arif Imam Suroso
Journal of Information Systems Engineering and Business Intelligence Vol. 5 No. 2 (2019): October
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (240.054 KB) | DOI: 10.20473/jisebi.5.2.156-162

Abstract

Background: The increasing usage and development of e-commerce in Indonesia, demands competition between e-commerce that exists. To be successful e-commerce should be balanced with a good information system. Some clinical research has established what factors that affected the success, including DeLone and McLean. According to their e-commerce success model, there are six variables that affect e-commerce success, system quality, information quality, service quality, use, user satisfaction, and net benefitObjective: The study aims to analyze the relationship between system quality, information quality and service quality to user satisfaction and use. In addition, the study aims to analyze the relationship between user satisfaction and use to a net benefit.Methods: This study draws on the DeLone and McLean Model of Information System (IS) success model. It is a quantitative study that was conducted in the form of a survey of 110 users of each Lazada, Bukalapak, and Shopee users.Results: By applying DeLone and McLean model, this findings confirmed four hypotheses were significant in Bukalapak, Lazada, and Shopee.Conclusion:There were significant effect between the system quality on user satisfaction, service quality on use, service quality on user satisfaction and user satisfaction on net benefits. Meanwhile, system quality had insignificant effect to use and also information quality to use in Bukalapak, Lazada, and Shopee.Keywords: DeLone and McLean model,E-Commerce Success, Information System Success Measurement, IS Success Model 
Implementasi Location Based Service Pada Aplikasi Mobile Pencarian Halte BRT Transmusi Palembang Usman Ependi; Suyanto Suyanto
Journal of Information Systems Engineering and Business Intelligence Vol. 2 No. 1 (2016): April
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (606.724 KB) | DOI: 10.20473/jisebi.2.1.33-39

Abstract

Abstrak— BRT Transmusi Palembang, merupakan sarana angkutan umum masyarakat kota palembang yang sedang berkembang dengan pesat. Sampai saat ini armadanya sudah mencapai 180 unit dan didukung dengan keberadaan halte yang jumlahnya mencapai 290 halte. Untuk menggunakan jasa BRT TransMusi, masyarakat terlebih dahulu harus menuju ke halte terdekat. Banyaknya halte yang tersebar di penjuru kota Palembang, justru menyebabkan kebingungan bagi pengguna untuk menentukan halte mana yang harus dia tuju. Untuk itu, masyarakat perlu panduan agar bisa menemukan dan menuju halte dengan cepat. Penelitian ini mengembangkan aplikasi mobile pencarian halte BRT TransMusi berbasis lokasi. Dengan aplikasi ini pengguna dapat dengan mudah menemukan dan menuju halte terdekat dari posisinya berada karena aplikasi ini akan menampilkan peta jalan untuk menuju ke lokasi halte terdekat. Aplikasi ini dikembangkan dalam bentuk mobile, karena pengguna akan lebih mudah dan lebih cepat dalam mengakses aplikasi ini. Selain itu dengan perangkat mobile pengguna bisa mengakases aplikasi ini kapan saja dan dimana saja dalam wilayah kota Palembang.Kata Kunci— Halte, transmusi, mobile, location base serviceAbstract— BRT Transmusi Palembang, a public transportation city of Palembang society that is growing rapidly. To date the fleet has reached 180 units and is supported by the presence of the stop number reached 290 stops. To use TransMusi BRT services, people must first go to the nearest bus stop. The number of bus stops are scattered throughout the city of Palembang, it causes confusion for users to determine which one should stop him going. For that, people need to be able to find a guide to the bus stop and quickly. This study developed a mobile application search BRT TransMusi stop location-based. With this application, users can easily find and headed to the nearest stop of the position is because the application will display a map of the road to get to the nearest bus stop locations. The application was developed in the form of mobile, because users will be easier and faster to access this application. In addition to mobile device users can access the application anytime and anywhere within the city of Palembang.Keywords— Halte, transmusi, mobile, location base service
Sistem Pendukung Keputusan Peramalan Jumlah Kunjungan Pasien Menggunakan Metode Extreme Learning Machine (Studi Kasus : Poli Gigi Rsu Dr. Wahidin Sudiro Husodo Mojokerto) Delia Putri Fardani; Eto Wuryanto; Indah Werdiningsih
Journal of Information Systems Engineering and Business Intelligence Vol. 1 No. 1 (2015): April
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (405.829 KB) | DOI: 10.20473/jisebi.1.1.33-40

Abstract

Abstrak— Penelitian ini bertujuan merancang dan membangun sistem pendukung keputusan untuk meramalkan jumlah kunjungan pasien RSU Dr. Wahidin Sudiro Husodo Kota Mojokerto dengan menggunakan metode Extreme Learning Machine (ELM). Dengan adanya  sistem pendukung keputusan ini direktur Rumah Sakit dapat meramalkan jumlah kunjungan pasien dan membantu dalam pembuatan kebijakan rumah sakit, mengatur sumber daya manusia dan keuangan, serta mendistribusikan sumber daya material dengan benar khususnya pada poli gigi. Dalam rancang bangun sistem pendukung keputusan ini dilakukan dalam beberapa tahap. Tahap yang pertama, pengumpulan data untuk mengidentifikasi inputan yang dibutuhkan dalam penghitungan metode ELM. Tahap kedua, pengolahan data, data dibagi menjadi data training dan data testing dengan komposisi data training sebanyak 80% (463 data) dari total 579 data dan 20% (116 data) sisanya sebagai data testing yang kemudian di normalisasi. Tahap ketiga, peramalan jumlah kunjungan pasien menggunakan metode ELM. Tahap terakhir, perancangan sistem menggunakan sysflow dan pembangunan sistem berbasis desktop serta evaluasi sistem. Hasil penelitian berupa aplikasi sistem pendukung keputusan untuk meramalkan jumlah kunjungan pasien. Dan melalui uji coba menggunakan 116 data testing berdasarkan fungsi aktivasi sigmoid biner dengan jumlah hidden layer sebanyak 7 unit dan Epoch 500 diperoleh hasil optimal MSE sebesar 0.027 Kata Kunci— Sistem Pendukung Keputusan, Peramalan, Jaringan Syaraf Tiruan, Extreme Learning MachineAbstract— In this research, a decision support system to predict the number of patients visit RSU Dr. Wahidin Sudiro Husodo Kota Mojokerto was designed and developed using Extreme Learning Machine (ELM) method which aims to assist director in making decision for the hospital, managing human and financial resource, as well as distributing material resource properly especially in the Department of Dentistry. The design of this decision support system to predict the number of patients visit with ELM method is divided into several stages. The first stage is to identify the input data collection needed in the calculation method of ELM. The next stage is processing the data; the data is divided into training data and testing data and then normalized, in which training data is 80% (452 data) and testing 579 data 20% (116 data). The third stage is problem solving using ELM. The last stage is the design and development of systems using sysflow and desktop-based system that includes the implementation and evaluation of the system. The result of this research is an application of decision supporting system to predict number of patients. By using 116 testing data based on the binary sigmoid activation function using 7 units of hidden layer and 500 Epoch then Optimal MSE value that was obtained is 0.027. Keywords— Decision Supporting System, Prediction, Artificial Neural Network, Extreme Learning Machine
Clustering of Drug Sampling Data to Determine Drug Distribution Patterns with K-Means Method : Study on Central Kalimantan Province, Indonesia Wahyuri Wahyuri; Umi Athiyah; Ira Puspitasari; Yunita Nita
Journal of Information Systems Engineering and Business Intelligence Vol. 5 No. 2 (2019): October
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1970.953 KB) | DOI: 10.20473/jisebi.5.2.208-218

Abstract

Background: Drug sampling and testing in the context of post-marketing control is an important component to ensure drug safety in the supply chains. The results are used by the Indonesian National Agency for Drug and Food Control (NA-FDC) for conducting public warnings, evaluating the Good Manufacturing Practice (GMP) and Good Distribution Practice (GDP) implementation, and enforcing the law against drug violation.Objective: This study aimed to identify and analyze drug distribution patterns to provide an overview of drug sampling in the public sector. Methods: The data was collected from Balai Besar Pengawas Obat dan Makanan (BBPOM) Palangka Raya’s database. The collected data were the drug sampling data from Integrated Information Reporting Systems (IIRS) application from 2014 to 2018. Next, we employed CRISP-DM methodology to analyze the data and to identify the pattern. K-means clustering model was selected for data modeling.Results: The dataset contained five attributes, i.e., drug name, therapeutic classes, district/city, sample category, and evaluation of drug surveillance. The drug distribution pattern formed three clusters. First cluster contained 522 drug items in eight therapeutic classes and spread over ten districts, second cluster contained 1542 drug items in five therapeutic classes and spread over five districts, and third cluster contained 503 drug items in eleven therapeutic classes and spread across nine districts.Conclusion: To conclude, the applied data mining technique has improved the decision on the drug sampling planning. It also provides in-depth information on the improvement of drug post-marketing control performance in Central Kalimantan Province.Keywords: Clustering, CRISP-DM, Data Mining, Drug distribution patterns, Drug quality control, Drug sampling
A Language-Independent Library for Observing Source Code Plagiarism Ricardo Franclinton; Oscar Karnalim
Journal of Information Systems Engineering and Business Intelligence Vol. 5 No. 2 (2019): October
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1883.598 KB) | DOI: 10.20473/jisebi.5.2.110-119

Abstract

Background: Most source code plagiarism detection tools are not modifiable. Consequently, when a modification is required to be applied, a new detection tool should be created along with it. This could be a problem as creating the tool from scratch is time-inefficient while most of the features are similar across source code plagiarism detection tools.Objective: To alleviate researchers' effort, this paper proposes a library for observing two plagiarism-suspected codes (a feature which is similar across most source code plagiarism detection tools).Methods: Unique to this library, it is not constrained by the selected programming language for development. It is executed from command line, which is supported by most programming languages.Results: According to our evaluation, the library is integrable and functional. Moreover, the library can enhance teaching assistants' accuracy and reduce the tasks' completion time.Conclusion: The library can be beneficial for the development of source code plagiarism detection tools since it is integrable, functional, and helpful for teaching assistants.Keywords:Language independency, Plagiarism detection, Reusable library, Source code, Tool development
Evaluasi Tutor Online untuk Meningkatkan Kualitas Layanan Tutorial Tatap Muka pada Pendidikan Jarak Jauh Sugiran Sugiran; Pardamean Daulay; Badrus Zaman; Faried Effendy; Lilis Amalia
Journal of Information Systems Engineering and Business Intelligence Vol. 2 No. 1 (2016): April
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (318.821 KB) | DOI: 10.20473/jisebi.2.1.1-10

Abstract

Abstrak— Penjaminan kinerja tutor di Universitas Terbuka (UT) ditentukan dari hasil evaluasi tutor yang dilakukan secara manual dengan cara membagikan angket kepada mahasiswa. Sistem ini membutuhkan biaya besar, kurang disukai mahasiswa, mengganggu aktivitas tutorial, pengolahan angket masih dilakukan secara manual, dan laporan hasil tidak dapat diterima tepat waktu. Solusinya perlu sistem evaluasi tutor berbasis online untuk menggantikan sistem yang lama. Penelitian ini bertujuan untuk menghasilkan aplikasi sistem evaluasi tutor berbasis online yang dapat meningkatkan kualitas layanan Tutorial Tatap Muka di UT. Desain aplikasi menggunakan System Development Life Cycle (SDLC) dengan beberapa tahapan. Tahap pertama adalah analisis kebutuhan menggunakan teknik wawancara, dokumentasi dan observasi. Tahap kedua adalah analisis kebutuhan sistem yang dilakukan untuk merumuskan solusi dari permasalahan yang ada. Tahap ketetiga yaitu perancangan sistem yang digambarkan dalam bentuk diagram data flow diagram context level (DFD). Tahap keempat merupakan implementasi sistem yang dilakukan dengan membuat pseudocode. Tahap terakhir adalah pengujian sistem, menggunakan metode black box testing. Hasil ujicoba menunjukkan bahwa aplikasi sistem sudah sesuai dengan kebutuhan, dimana mahasiswa UT dapat menilai tutor dengan mengakses internet. Berdasarkan pengujian fungsional dan evaluasi aplikasi evaluasi tutor berbasis online ini dapat membantu UT  dalam hal peningkatan kualitas layanan tutorial tatap muka.Kata Kunci— Sistem Evaluasi Tutor, Tutorial Tatap Muka, Pendidikan Jarak Jauh, Universitas TerbukaAbstract— Underwriting performance of tutors at the Open University (UT) is determined from the evaluation of tutors is done manually by distributing a questionnaire to students. This system is costly, less preferred students, interfere with the activity of the tutorial, the questionnaire processing is still done manually, and the report can not be received on time. The solution needs to be an evaluation system based tutors online to replace the old system. This study aims to generate application-based tutor online evaluation system which can improve the quality of service tutorial face to face at UT. Application design using the System Development Life Cycle (SDLC) with several stages. The first is a systems planning (needs analysis), using interview techniques, dokuemntasi and observation. Second, system analysis (system requirements analysis) conducted to formulate the solution of existing problems. Third, the system design (system design), which is depicted in diagrammatic form context-level data flow diagram (DFD). Fourth systems implementation (implementation of the system), carried out using pseudocode programming code based on the programming language, and Fifth, system testing, using black box method testing. Results test show that the application is in conformity with the needs of the system, where students can assess the tutor UT simply by accessing the internet. Expected results of this study, evaluation of the application form based online tutors can help UT in terms of improving the quality of face-to-face tutorial services.Keywords— Tutor Evaluation System, Face to Face Tutorial, Distance Education, Open University
Aturan Asosiasi Dengan Standar Storet Pada Model Prediksi Parameter Pendukung Uji Kualitas Air Baku Diana Purwitasari; Oktaviandra Pradita Putri; Wijayanti Nurul Khotimah
Journal of Information Systems Engineering and Business Intelligence Vol. 1 No. 1 (2015): April
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (445.465 KB) | DOI: 10.20473/jisebi.1.1.1-8

Abstract

Abstrak—Uji laboratorium tentang kualitas air baku pada penyediaan dan pengolahan air bersih memperhatikan parameter air terkait faktor fisika, kimia dan biologi. Analisis kualitas air di laboratorium membutuhkan waktu. Usulan sistem akan mempercepat waktu dengan menganalisis catatan dataparameter air yang ada dalam rekam data PDAM. Aturan asosiasi pada sistem digunakan untuk melihat hubungan antara parameter air yang didahului praproses dengan mengubah data numerik ke data kategorikal berdasarkan standar STOrage and RETrievalData Warehouse (STORET).Selanjutnya model prediksi parameter air yang dihasilkan dari data belajar akan diserderhanakan terlebih dahulu sebelum validasi model dengan data uji. Pengujian model menggunakan data belajar menunjukkan rata-rata akurasi 70% dengan minimal support-confidence 30% data. Hasil model hubungan parameter air menggunakan rekam data PDAM dapat menjadi pendukung kebijakan di daerah tersebut dalam penyediaan dan pengolahan air bersih sebelum dilakukan uji kualitas laboratorium. Tanpa ada uji laboratorium beberapa nilai parameter faktor kimia tidak dapat diketahui. Meskipun demikian aturan yang dihasilkan sistem usulan tanpa uji laboratorium dapat memberikan akurasi 80%-95% dengan asumsi missing valuesnilai faktor kimiasetelah dicek manual dari narasumber pemilik data. Data uji coba menggunakan dataset kecil untuk mempermudah cek manual. Kata Kunci— prediksi kualitas air, aturan asosiasi, storetAbstrak—Raw Water (Air Baku) laboratory analysis is testing physical, chemical and bacteriological characteristicsof water to ensure that water supply is clean, safe and ready for drinking water quality. Analyzing raw water quality in laboratorium needs more time. The proposed system could shorten the laboratory processing time by analyzing daily water production log. Association ruleinthe proposed system was used to generate relation model of water characteristicsfrom the data log provided by local government owned water utilities (PDAM, Perusahaan Daerah Air Minum). The data was transformed first from numerical data into categorical data using STOrage and RETrieval Data Warehouse (STORET)standard.Generated model needs to be simplified because some prediction rules could have the same interpretation. The generated parameter prediction modelwas sufficient to be used as the supporting data for any local policy made related to water supply and sanitationwithout additional costs from standard lab testing of water quality. Some water quality values of chemical characteristics need lab testing. Given the missing values of several chemical characteristics, the generated parameter prediction model still could give better accuracy of 80%-95%. Since PDAM staffmanually validated the generated model, the experiments used small data set.  Keywords— water quality prediction, association rule, storet
Aspect based Sentiment Analysis of Employee’s Review Experience Nasa Zata Dina; Nyoman Juniarta
Journal of Information Systems Engineering and Business Intelligence Vol. 6 No. 1 (2020): April
Publisher : Universitas Airlangga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jisebi.6.1.79-88

Abstract

Background: Employees of technology companies evaluate their experience through online reviews. Online reviews of companies from employees or former employees help job seeker to find out the weaknesses and strengths of the companies.  The reviews can be used as an evaluation tool for each technology company to understand their employee’s perceptions. However, most information on online reviews is not well responded since some of the detailed information of the company is missing. Objective: This study aims to generate an Aspect-based Sentiment Analysis using user review data. The review data were then extracted and classified into five aspects: work balance, culture value, career opportunities, company benefit, and management. The output of this study is the aspect score from each company.Methods: This study suggests a method to analyze online reviews from employees in detail, so it can prevent the missing of specific information. The analysis was sequentially carried out in five stages. First, user review data were crawled from Glassdoor and stored in a database. Second, the raw data were processed in the data pre-processing stage to delete the incomplete data. Third, the words other than noun keyword were eliminated using Standford POS Tagger. Fourth, the noun keywords were then classified into each aspect. Finally, the aspect score was calculated based on the aspect-based sentiment analysis.Results: Result showed that the proposed method managed to turn raw review data into five aspects based on user perception.Conclusion: The study provides information for two parties, job seeker and the company. The analysis of the review could help the job seeker to decide which company that suits his need and ability. For the companies, it can be a great assistance because they will be more aware of their strengths and weaknesses. This study could possibly also provide ratings to the companies based on the aspects that have been determined.

Page 10 of 25 | Total Record : 246