cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. ogan ilir,
Sumatera selatan
INDONESIA
Science and Technology Indonesia
Published by Universitas Sriwijaya
ISSN : 25804405     EISSN : 25804391     DOI : -
An international Peer-review journal in the field of science and technology published by The Indonesian Science and Technology Society. Science and Technology Indonesia is a member of Crossref with DOI prefix number: 10.26554/sti. Science and Technology Indonesia publishes quarterly (January, April, July, October). Science and Technology Indonesia is an international scholarly journal on the field of science and technology aimed to publish a high-quality scientific paper including original research papers, reviews, short communication, and technical notes. This journal welcomes the submission of articles that covers a typical subject of natural science and technology such as: > Chemistry > Biology > Physics > Marine Science > Pharmacy > Chemical Engineering > Environmental Science and Engineering > Computational Engineering > Biotechnology Journal Commencement: October 2016
Arjuna Subject : -
Articles 23 Documents
Search results for , issue "Vol. 8 No. 3 (2023): July" : 23 Documents clear
Optimization of Liquid Smoke Products Made from Rubberwood with Pyrolysis Method Bazlina Dawami Afrah; M. Ihsan Riady; Lia Cundari; Muhammad Andzar Rizan; Jihan Utami; Siti Istiani Pratiwi; Muhammad Yori Pratama
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.353-360

Abstract

A large amount of rubberwood waste in Indonesia is caused by abundant rubberwood production. However, the utilization of rubberwood waste has not been optimized in Indonesia. One of the efforts to utilize rubberwood waste is to process it into liquid smoke. Liquid smoke is the dispersion of smoke vapor in water. The raw material used in this research is rubberwood. This study aimed to determine the quality of liquid smoke after purification by knowing the volume, density, pH, viscosity, yield, and phenol content using rubberwood as raw material and the pyrolysis method. The pyrolysis process is purified by distillation based on differences in boiling points. This research is divided into two stages of distillation, namely low grade purified liquid smoke and high grade purified liquid smoke. The analysis results will follow the quality standards of Japanese liquid smoke. The results show that the best liquid smoke from this research is liquid smoke with a pyrolysis time of 3 hours because it meets Japanese liquid smoke quality standards.
Synthesis, Characterization of Chitosan-ZnO/CuO Nanoparticles Film, and its Effect as an Antibacterial Agent of Escherichia coli Ahmad Fatoni; Agnes Rendowati; Lasmaryna Sirumapea; Lidya Miranti; Siti Masitoh; Nurlisa Hidayati
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.373-381

Abstract

The film of chitosan- ZnO/CuO nanoparticles was synthesized. This study were the synthesis and characterization of the chitosan-ZnO/CuO nanoparticles film and its effect as an antibacterial of Escherichia coli. The ZnO, CuO, and ZnO/CuO were biosynthesized by biological method and for the synthesis of the chitosan-ZnO/CuO nanoparticles film, the casting method was adopted. The product was analyzed by FTIR spectroscopy, X-ray diffraction (XRD), and Scanning Electron Microscope (SEM), respectively. The product of chitosan-ZnO/CuO nanoparticles film as paper disk and agar disk diffusion method was selected to study an antibacterial agent of this product. The Zn-O or Cu-O group was observed at a peak between 468-675 cm−1 for ZnO and 503 and 619 cm−1 for CuO nanoparticles, respectively. ZnO, CuO, and ZnO/CuO nanoparticles are in the crystalline form and it has a crystallite size of 13.21, 13.21, and 11.49 nm respectively. After interacting with chitosan, the metal nanoparticles such as ZnO, CuO, and ZnO/CuO nanoparticles can change the crystalline form of chitosan to be amorphous form. The addition of ZnO, CuO, and ZnO/CuO nanoparticles in the chitosan will change the surface morphology of chitosan. Chitosan-ZnO/CuO nanoparticles film can inhibit the growth of Escherichia coli bacteria.
Synthesis of Fe(III)-IIPs (Ion Imprinted Polymers): Comparing Different Concentrations of HCl and HNO3 Solutions in the Fe(III) Polymer Extraction Process for Obtaining the Largest Cavities in Fe(III)-IIPs Novianty; Jaya Edianta; Jorena; Khairul Saleh; Akhmad Aminuddin Bama; Erry Koriyanti; Menik Ariani; Idha Royani
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.361-366

Abstract

This study was conducted to synthesize Fe (III)-IIPs by free radical polymerization using the cooling-heating method. Cooling processat -5◦C for 1 hour, as well as heating at 75◦C, 80◦C, and 85◦C maintained for 3 hours, 2 hours and 1 hour, respectively. The Fe (III)-IIPs synthesis process involved Fe(NO3)3 with an average diameter of 18.23 nm, methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), benzoyl peroxide (BPO) and ethanol, each of which plays a role as an analyte, functional monomer, cross-linker, initiator, and porogen. The result of the polymerization process was a polymer containing ions namely Fe(III) polymer. The ions need to be removed by the extraction process to produce Fe(III)-IIPs, which act as absorbents. Furthermore, the extraction process is very influential in the process of losing ions and the formation of cavities or templates in the polymer body. The number of cavities formed tends to affect the ability of Fe(III)-IIPs to identify the target ion which has similar physical and chemical properties to the shape of the Fe(III)-IIPs cavity. The extraction process was carried out on Fe(III) polymer samples using HCl and HNO3 solutions with varying concentrations of 3 M and 6 M, respectively. The transmission percentage of FTIR analysis showed that for samples of Fe(III)-IIPs HCl 3 M and 6 M were 94.258% and 95.666%, while for Fe(III)-IIPs HNO3 3 M and 6 M were 92.735%, respectively. The largest percentage was shown in the 6 M HCl IIPs sample, which indicated that there were several ions lost from the polymer body after the extraction process. This is also reinforced by the results of the SEM analysis processed with Matlab, which showed 498 cavities with a distribution of voids on a scale of <100 nm, totaling 470.
Analysis of Extreme Heat Land Surface Temperature at a Tropical City (1988-2022): A Study on the Variability of Hot Spot during El Niño Southern Oscillation (ENSO) Oliver Valentine Eboy; Ricky Anak Kemarau
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.388-396

Abstract

Weather and climate in Malaysia, situated in Southeast Asia, are influenced by El Niño Southern Oscillation (ENSO), monsoons, Madden Julian Oscillation (MJO), and Indian Ocean Dipole (IOD). Previous studies on ENSO’s impact on temperature lacked detailed spatial information due to limited meteorological stations and cost constraints. This study utilizes remote sensing techniques, employing Landsat satellite data and Oceanic Niño Index (ONI) data, to analyze the spatial pattern of extreme land surface temperature distribution during ENSO events. Preprocessing includes radiometric and atmospheric corrections before converting digital numbers to land surface temperature values. Results indicate increased hotspot areas (>30°C) during El Niño events, with respective hotspot areas of 89.32 km² and 97.8 km² in 2015 and 2016, and 61.23 km² and 59.73 km² during La Niña in August and October 2018. Heat concentration areas remained consistent during the 1998 El Niño (89.32 km²) and the 2011 La Niña (55.82 km²). These findings highlight ENSO’s influence on altering hotspot distribution patterns. The increased hotspot area during El Niño events (34-36 km²) led to a 20-30% surge in electricity consumption as residents and offices in Kuching City, Sarawak, sought temperature regulation. This spatial information aids the government in identifying affected areas and implementing suitable measures to mitigate the impact of El Niño events.
Coprecipitation Synthesis and Antimicrobial Effect Study of Europium Doped Spinel Manganese Ferrites Nanoparticles (MnEu0.1Fe1.9O4NPs) Amina Chidouh; Tarek Tahraoui; Badra Barhouchi
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.494-500

Abstract

Due to the high prevalence of micro-organisms resistant to conventional antimicrobials, the search for new antimicrobial drugs is underway, with nanoparticles being one of the options. This study reports for the first time the use of the coprecipitation method to synthesize europium (Eu) doped spinel manganese ferrites nanoparticles (MnEu0.1Fe1.9O4NPs). The purpose of this research is to determine the antimicrobial activity of MnEu0.1Fe1.9O4NPs. MnEu0.1Fe1.9O4NPs were analyzed using Fourier Transform Infrared Spectroscopy (FTIR), X Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-Ray Analysis (EDX) to determine their structure, size, morphology and elemental compositions. The antimicrobial activity of synthesized nanoparticles was evaluated qualitatively using a diffusion disc on agar, followed by minimum inhibitory concentrations (MIC) determination. The findings show that all tested strains were adversely affected by the examined NPs, where E. coli exhibited the highest sensitivity to NPs, followed by S. aureus. The NPs displayed a moderate level of anti-candida action. MnEu0.1Fe1.9O4NPs could be exploited in biomedical usages.
Increasing the Solubility and Anti-Inflammatory Activity of Curcumin by Cocrystallization Yudi Wicaksono; Kuni Zu’aimah Barikah; Amanda Della Yudatama; Havidhatul Maulia; Nuri; Dwi Setyawan
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.501-508

Abstract

Curcumin (CUR) is a polyphenolic compound that exhibits potent anti-inflammatory activity. However, only a tiny amount of CUR is absorbed during oral administration, which is because CUR is difficult to dissolve in water. The aim of the research was to increase the solubility of CUR through the cocrystallization technique using isonicotinamide coformer (INIC) by solvent evaporation. Cocrystal characterization was carried out using a powder X-ray diffractometer (PXRD), a differential scanning calorimeter (DSC), a Fourier transform infrared spectrometer (FTIR), and a scanning electron microscope (SEM). Solubility was evaluated using the shaking method, while the anti-inflammatory activity test was carried out using the carrageenan induced mouse leg edema method. The resulting CUR-INIC (1:1) cocrystal has a diffractogram with new diffraction peaks of 2theta at 15.00, 16.22, and 22.89◦ compared to the individual diffractograms of CUR and INIC. In the cocrystal, CUR and INIC form intermolecular interactions of hydrogen bonds, resulting in a new solid phase with a melting point of 160.1◦C. The solubility of the CUR-INIC cocrystal in water was 73.1±0.23 ug/mL, which increased 14 times compared to the solubility of initial CUR, which was only 5.05±0.07 ug/mL. The CUR-INIC cocrystal showed a percentage of edema inhibition in mice (5 hours) 130% more potent than that of initial CUR. Therefore, CUR-INIC cocrystals can be used to improve CUR solubility to obtain more excellent anti-inflammatory effects.
Okra Mucilage Extract as A Co-Surfactant Increased the Curcumin Nanoemulsion Stability and Encapsulation Efficiency El Fajriyah Aulia Putri; Ellya Indahyanti; Diah Mardiana; Maria Lucia A.D Lestari; Zubaidah Ningsih
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.509-515

Abstract

Curcumin has various bio-functional properties; however, curcumin poor bioavailability reduces its efficacy. Nanoemulsion delivery system is an alternative method improving curcumin bioavailability in which surfactant and oil used, play an important role in determining nanoemulsion properties. Several studies on curcumin nanoemulsions apply synthetic surfactants which can be harmful if they are added excessively. This study aims to use a natural emulsifying agent, namely okra mucilage extract (OME), and determine its effectiveness as co surfactant. OME is safe to use as an emulsifying agent because it is natural, harmless, safe, biodegradable and eco-friendly. Liquid-liquid and microwave extraction methods were used to obtain OME which was further identified using Fourier Transfer Infrared Spectroscopy (FTIR). Meanwhile, sonication method was used to produce curcumin nano-emulsion (CurN). The particle size and polydispersity index of curcumin nano-emulsion were measured using Particle Size Analyzer (PSA) with Dynamic Light Scattering (DLS) technique, while the morphology of the nanoemulsion was observed using a Digital Imaging Microscope and Confocal Laser Scanning Microscope (CLSM). The results showed that the addition of 0.0160 g OME at a ratio of 1:5 (OME: Tween 80) in the preparation of 5 mL of CurN was able to reduce the particle size and polydispersity index from 740.80 ± 9.70 nm to 289.20 ± 2.23 and 0.340 ± 0.005 to 0.165 ± 0.008 respectively. OME increased the encapsulation efficiency from 77.93 ± 6.59% to 87.17 ± 1.12% which was confirmed by the augmentation of the fluorescence intensity of curcumin from 192.82 to 388.55. The addition of OME also maintained the stability of the CurN up to 14 days of storage at 4°C.
Spectrophotometric Change of Butterfly Pea (Clitoria ternatea L.) Flower Extract in Various Metal Ion Solutions During Storage Abdullah Muzi Marpaung; Dania Pustikarini
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.367-372

Abstract

This study aimed to investigate the effect of six chloride salts on butterfly pea flower extract’s anthocyanins stability. The salts were NaCl, KCl, CaCl2, MgCl2, FeCl3, and AlCl3. The samples were analyzed using a UV-Vis spectrophotometer to observe color degradation and change in hue during storage. The extraction of anthocyanins was done using a modified method, and the solutions were stored in dark vials at room temperature. The degradation kinetics of benzene derivatives, acyl groups, non-anthocyanin flavonoid, flavylium cation, quinonoidal base and anionic quinonoidal base were evaluated using the first-order reaction, and the half-life was calculated. The effect of metal ions was studied by analyzing the change in absorbance of each band using regression analysis and a slope test. The results showed that monovalent (Na+ and K+) and divalent (Ca2+ and Mg2+) ions did not result in a significant shift in the spectrogram. Trivalent metal ions (Al3+ and Fe3+) had limited interaction with the anthocyanins, heightened the brown color, and decreased the overall color quality. K+, Ca2+, Mg2+, Al3+, and Fe3+ ions showed the ability to improve the stability of the extract’s color, while Na+ tended to accelerate color degradation. The pattern of changes in the spectrogram during storage suggests that color degradation occurs in two ways: the unfolding of hydrophobic interactions and the deacylation of anthocyanin. Trivalent metal ions showed the best stability performance, with Fe3+ preventing the unfolding of hydrophobic interactions and Al3+ hindering the deacylation. The combination of the two is highly likely to improve the color stability of the butterfly pea flower extract. However, both increase the browning index, thus decreasing color quality. This research highlights the potential of adding cations to improve the color stability of the butterfly pea flower extract, making it a more attractive food coloring agent.
Development and Validation of Fast and Simple Fourier Transform Infrared Spectrophotometric Method for Analysis of Thiamphenicol in Capsule Dosage Form Nerdy Nerdy; Linda Margata; Nilsya Febrika Zebua; Puji Lestari; Tedy Kurniawan Bakri; Faisal Yusuf; Vonna Aulianshah
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.344-352

Abstract

The development of a method for identification and determination of thiamphenicol by Fourier Transform Infrared will provide convenience to developers because it is fast and easy for analysis. The research was carried out by utilizing the solubility of thiamphenicol in methanol with three stages, namely method development, sample analysis, and method validation. The method development stage showed that the specific peak of thiamphenicol was at a peak with a wavenumber of 1694.1 cm−1; this specific peak of thiamphenicol was used for qualitative analysis and quantitative analysis of thiamphenicol in the capsule dosage form. The sample analysis showed that all analyzed thiamphenicol in capsule dosage form showed good results both qualitatively and quantitatively. Qualitatively all the samples analyzed showed a specific peak at specific positions and specific wavenumbers. These results meet the requirements for containing thiamphenicol in the dosage form. Quantitatively all the samples analyzed ranged from 97.97% to 102.24% by peak height and peak area. These results meet the requirements for active substance levels in general preparations within 90.0% to 110.0%. The method validation for peak height and peak area showed that the accuracy parameter had a recovery percentage of 100.28% and 100.41% (between 98.0% to 102.0%), the precision parameter with a relative standard deviation of 0.31% and 0.37% (not more than 2.0%), and the linearity parameter with a correlation coefficient of 0.9999 and 0.9997 (not less than 0.99). The limit of detection value was 0.2971 mg/mL and 0.5338 mg/mL, the limit of quantitation value was 0.9004 mg/mL and 1.6176 mg/mL, the range for both was 80% to 120%, and the specificity for both met the requirement. The Fourier Transform Infrared method has been successfully developed, applied, and validated for qualitative analysis and quantitative analysis of thiamphenicol in capsule dosage form.
Synthesis, Characterization, and Antibacterial Activity of Some Mesalazine Derivatives Ekhlas Qanber Jasim; Munther Abduljaleel Muhammad-Ali; Ayad Almakki
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.338-343

Abstract

Mesalazine, often referred to as mesalamine or 5-aminosalicylic acid (5-ASA), and its derivatives are some of the first medications to be approved for treating digestive tract inflammations, including ulcerative colitis and mild to moderate Crohn’s disease. Sulfasalazine, discovered in 1938 for therapeutic use, was the first mesalazine derivative. High yields of four different mesalazine derivatives were synthesized, including two Schiff bases and two azo compounds. The present study involved the synthesis of Schiff bases through the reaction of mesalazine with pyrrole-2-carbaldehyde or indole-2-carbaldehyde, resulting in the formation of 5-(((1H-pyrrol-2-yl)methylene)amino)-2-hydroxybenzoic acid (1) or 5-(((1H-indol-2-yl)methylene)amino)-2hydroxybenzoic acid (2), respectively. The synthesis of azo compounds involved the coupling of mesalazine with sulfamethoxazole or pyridoxine, resulting in the formation of 5-amino-2-hydroxy-3-((4-(N-(5-methylisoxazol-3-yl)sulfamoyl)phenyl)diazenyl)benzoic acid (3) or 2-hydroxy-5-((5-hydroxy-3,4-bis(hydroxymethyl)-6-methylpyridin-2-yl)diazenyl)benzoic acid (4), respectively. The identification of the synthesized compounds was carried out using IR and 1H-NMR spectroscopy. Antibacterial assessment of the synthetic compounds was performed in vitro against gram-negative bacteria (such as Escherichia coli and Pseudomonas aeruginosa) and gram-positive bacteria (Staphylococcus aureus). The antibacterial activity studies demonstrated that against Escherichia coli and Staphylococcus aureus, the Schiff base compounds are more active than azo compounds. Compound 1 showed the highest activity, resulting in a 23 mm inhibition zone against E. coli at 1000 ug/ml. In contrast, the antibacterial activity of compound 2 was observed to be 25 mm against S. aureus at the same highest concentration.

Page 1 of 3 | Total Record : 23