Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Development Extraction of Regional Features of Pleural Cavity Objects in Pneumothorax Lung X-ray Images by Dilation and Erosion Morphology Marfalino, Hari; Defit, Sarjon; Nurcahyo, Gunadi Widi
JOIV : International Journal on Informatics Visualization Vol 9, No 4 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.4.3387

Abstract

Image processing is a solution in the development of chest X-ray technology, starting from the image segmentation process as a preprocessing stage to separate the image object from the original background. Spontaneous pneumothorax (SP) is a type of air collection in the pleural cavity that develops without trauma. The diagnosis of pneumothorax has a sensitivity of approximately 25 to 75% using an anteroposterior chest x-ray, which still provides a dubious picture of pneumothorax. However, the development of the Region Feature algorithm with a new algorithm, namely RM Multy, has improved the accuracy. The RM Multy algorithm can calculate the area of the object, allowing it to produce the area of infiltration in the right lung, left lung, and the lung as a whole. The Region Feature results of the Pneumothorax obtained with the detected image area as many as 19 areas, for the pixel size of each area are 145, 355, 110, 31, 31, 52, 30, 36, 54, 122, 58, 23, 476, 77, 192, 24, 168, 263, 41 and 44. So the total pixels for 19 areas is 2301. The area converted to mm2 is 2301 x 0.04 mm2 = 92.04 mm2. Classification results on lungs with Pneumothorax and Normal by detection process with RM Multy using the CNN algorithm with an accuracy of 96.43%. This accuracy confirms the success of the system, which has been processed using a new algorithm. Therefore, further development is needed to improve detection accuracy in pneumothorax cases with smaller area sizes.