Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Journal of Applied Data Sciences

Early Stopping on CNN-LSTM Development to Improve Classification Performance Anam, M. Khairul; Defit, Sarjon; Haviluddin, Haviluddin; Efrizoni, Lusiana; Firdaus, Muhammad Bambang
Journal of Applied Data Sciences Vol 5, No 3: SEPTEMBER 2024
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v5i3.312

Abstract

Currently, CNN-LSTM has been widely developed through changes in its architecture and other modifications to improve the performance of this hybrid model. However, some studies pay less attention to overfitting, even though overfitting must be prevented as it can provide good accuracy initially but leads to classification errors when new data is added. Therefore, extra prevention measures are necessary to avoid overfitting. This research uses dropout with early stopping to prevent overfitting. The dataset used for testing is sourced from Twitter; this research also develops architectures using activation functions within each architecture. The developed architecture consists of CNN, MaxPooling1D, Dropout, LSTM, Dense, Dropout, Dense, and SoftMax as the output. Architecture A uses default activations such as ReLU for CNN and Tanh for LSTM. In Architecture B, all activations are replaced by Tanh, and in Architecture C, they are entirely replaced by ReLU. This research also performed hyperparameter tuning such as the number of layers, batch size, and learning rate. This study found that dropout and early stopping can increase accuracy to 85% and prevent overfitting. The best architecture entirely uses ReLU activation as it demonstrates advantages in computational efficiency, convergence speed, the ability to capture relevant patterns, and resistance to noise.
Improved Performance of Hybrid GRU-BiLSTM for Detection Emotion on Twitter Dataset Anam, M. Khairul; Munawir, Munawir; Efrizoni, Lusiana; Fadillah, Nurul; Agustin, Wirta; Syahputra, Irwanda; Lestari, Tri Putri; Firdaus, Muhammad Bambang; Lathifah, Lathifah; Sari, Atalya Kurnia
Journal of Applied Data Sciences Vol 6, No 1: JANUARY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i1.459

Abstract

This study addresses emotion detection challenges in tweets, focusing on contextual understanding and class imbalance. A novel hybrid deep learning architecture combining GRU-BiLSTM with SMOTE is proposed to enhance classification performance on an Israel-Palestine conflict dataset. The dataset contains 40,000 tweets labeled with six emotions: anger, disgust, fear, joy, sadness, and surprise. SMOTE effectively balances the dataset, improving model fairness in detecting minority classes. Experimental results show that the GRU-BiLSTM hybrid with an 80:20 data split achieves the highest accuracy of 89%, surpassing BiLSTM alone, which obtained 88%, and other state-of-the-art models. Notably, the proposed model delivers significant improvement in detecting the emotion of joy (recall: 0.87, F1-score: 0.86). In contrast, the surprise category remains challenging (recall: 0.24). Compared to existing research, this study highlights the effectiveness of combining SMOTE and hybrid GRU-BiLSTM, outperforming models such as CNN, GRU, and LSTM on similar datasets. The incorporation of GloVe embeddings enhances contextual word representations, enabling nuanced emotion detection even in sarcastic or ambiguous texts. The novelty lies in addressing class imbalance systematically with SMOTE and leveraging GRU-BiLSTM's complementary strengths, yielding superior performance metrics. This approach contributes to advancing emotion detection tasks, especially in conflict-related social media data, by offering a robust, context-sensitive, and balanced classification method.
Enhancing the Performance of Machine Learning Algorithm for Intent Sentiment Analysis on Village Fund Topic Anam, M. Khairul; Putra, Pandu Pratama; Malik, Rio Andika; Karfindo, Karfindo; Putra, Teri Ade; Elva, Yesri; Mahessya, Raja Ayu; Firdaus, Muhammad Bambang; Ikhsan, Ikhsan; Gunawan, Chichi Rizka
Journal of Applied Data Sciences Vol 6, No 2: MAY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i2.637

Abstract

This study explores the implementation of Intent Sentiment Analysis on Twitter data related to the Village Fund program, leveraging Multinomial Naïve Bayes (MNB) and enhancing it with Synthetic Minority Over-sampling Technique (SMOTE) and XGBoost (XGB). The analysis categorizes tweets into six labels: Optimistic, Pessimistic, Advice, Satire, Appreciation, and No Intent. Initially, the MNB model achieved an accuracy of 67% on a 90:10 data split. By applying SMOTE, accuracy improved by 12%, reaching 89%. However, adding Chi-Square feature selection did not increase accuracy further. Incorporating XGB into the MNB+SMOTE model led to a 6% improvement, achieving a final accuracy of 95%. Comprehensive model evaluation revealed that the MNB+SMOTE+XGB model achieved 96% accuracy, 96% precision, 96% recall, and a 96% F1-score, with an AUC of 99%, categorizing it as excellent. These findings demonstrate that the combination of SMOTE for addressing class imbalance and XGBoost for boosting performance significantly enhances the MNB model's classification capabilities. The novelty lies in the integration of these techniques to improve intent sentiment classification for public opinion analysis on the Village Fund program. The results indicate that the majority of tweets labeled as "No Intent" reflect a lack of specific sentiment or actionable intent, providing valuable insights into public perception of the program.
Implementation of Naïve Bayes Gaussian Algorithm for Real-Time Classification of Broiler Cage Conditions Rosmasari, Rosmasari; Prafanto, Anton; Firdaus, Muhammad Bambang
Journal of Applied Data Sciences Vol 6, No 3: September 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i3.694

Abstract

Monitoring large-scale broiler farms poses considerable challenges due to the variable nature of environmental conditions, which have a direct impact on poultry health and productivity. This study proposes a real-time classification system for broiler house conditions, utilizing the Naïve Bayes Gaussian algorithm in conjunction with the Internet of Things (IoT) technology. The system has been developed to address the limitations of manual monitoring by automating the collection of temperature, humidity, and ammonia data through BME-680 and MICS-5524 sensors, which are strategically positioned 30 cm from the floor to optimize ammonia detection. Utilizing a dataset comprising 865 records, meticulously divided into 75% for training (648 records) and 25% for testing (217 records), the model attained an accuracy of 82.03%, a precision of 75.67%, a recall of 82.67%, and an F1-score of 77.67%. A comparative analysis was conducted, which demonstrated significant advantages over alternative classification methods, with Decision Trees achieving 79.5% accuracy and Support Vector Machines reaching 80.8%. The innovation lies in the integration of automated condition classification into an IoT system, enabling rapid responses to environmental changes with processing times of approximately 500 milliseconds from sensing to classification. The system demonstrated an accuracy of 178 data points, with a misclassification rate of 39 out of 217 test samples. The strategic placement of sensors at a height of 30 cm optimizes ammonia detection while ensuring accurate temperature and humidity readings. The system provides historical data, enabling farms to analyze long-term environmental trends, and thereby support data-driven decision-making strategies to enhance broiler welfare and operational efficiency. Usability testing with five poultry farm operators confirmed the dashboard's intuitive design, though recommendations for visual alerts for critical ammonia levels were suggested for future iterations.