Claim Missing Document
Check
Articles

Found 22 Documents
Search

MATHEMATICAL THINKING DAN KAITANNYA DENGAN WAYS OF UNDERSTANDING, WAYS OF THINKING: SEBUAH KAJIAN PUSTAKA Wilda Syam Tonra; Talisadika S. Maifa; Willy Abdul Ghany; Siti Fatimah
SIGMA Vol 9, No 1 (2023): SIGMA
Publisher : Prodi Pendidikan Matematika FKIP Universitas Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53712/sigma.v9i1.1970

Abstract

Abstrak:Awal munculnya istilah “Mathematical Thinking” merujuk kepada istilah dari buku yang sangat terkenal berjudul Thinking Mathematically dengan jumlah sitasi saat ini mencapai 1781. Buku ini ditulis oleh John Mason dengan Leone Burton dan Kaye Stacey tahun 1982. Buku ini menjadi rujukan dari beberapa peneliti lainnya. Di buku ini, Mathematical Thinking proses dibagi menjadi 2 pasang proses yaitu Specialising and Generalising kemudian Conjecturing and Convincing. Namun, istilah “Mathematical Thinking”memiliki beberapa pergeseran makna sesuai dengan perkembangan dari tahun ke tahun. Selain itu, paper ini juga membahas kaitan antara “Mathematical Thinking” atau berpikir matematis dengan ways of understanding dan ways of thinking. Kata Kunci: Mathematical Thinking; ways of understanding; ways of thinking Abstract:Early term of "Mathematical Thinking" refers to the term from a very famous book entitled Thinking Mathematically with the current number of citations reaching 1781. This book was written by John Mason with Leone Burton and Kaye Stacey in 1982. This book became a reference for several other researchers. In this book, the Mathematical Thinking process is divided into 2 pairs of processes, namely Specializing and Generalising then Conjecturing and Convincing. However, the meaning of mathematical thinking has changed according to developments from year to year. In addition, this paper also discusses the relationship between "Mathematical Thinking" with ways of understanding and ways of thinking.conclusions.
PENGEMBANGAN SOAL MATEMATIKA MODEL PISA UNTUK SISWA KELAS 7 Dina Timutang; Talisadika Maifa; Cecilia Novianti Salsinha
JEMST (Jurnal of Education in Mathematics, Science, and Technology) Vol. 4 No. 2 (2021): JEMST Vol 4 No 2 2021
Publisher : Faculty of Education and Teacher Training, State Islamic University of Sulthan Thaha Saifuddin Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30631/jemst.v4i2.56

Abstract

Penelitian ini bertujuan untuk menghasilkan soal-soal matematika model PISA untuk siswa kelas 7 yang valid dan praktis. Jenis penelitian ini adalah penelitian pengembangan dengan menggunakan model pengembangan Tessmer dan dilaksanakan di SMPK Putri St Xaverius Kefamenanu. Hasil penelitian menunjukkan prototipe 1 soal matematika model PISA ini valid secara kualitatif berdasarkan hasil lembar validasi oleh validator, kemudian prototipe 1 direvisi berdasarkan komentar dan saran validator. Selanjutnya soal diujicobakan ke siswa pada tahap one to one dan kemudian direvisi lagi berdasarkan hasil jawaban, lembar angket dan wawancara sehingga tersusun prototipe 2. Prototipe 2 diujicobakan lagi ke siswa pada tahap small grup untuk dianalisis validitas butir soal berdasarkan hasil skor jawaban siswa. Soal juga dikatakan praktis berdasarkan lembar validasi ahli pakar, jawaban siswa, lembar angket, dan hasil wawancara. Dengan demikian, penelitian ini menghasilkan 8 butir soal yang valid secara kualitatif dan kuantitatif serta dapat dikatakan praktis.
Eksplorasi penggunaan teknologi dalam pembelajaran limit fungsi: Systematic literature review Wilda Syam Tonra; Nurjanah Nurjanah; Didi Suryadi; Talisadika S. Maifa; Andika Putra R
Delta-Pi: Jurnal Matematika dan Pendidikan Matematika Vol 12, No 2 (2023)
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/dpi.v12i2.7065

Abstract

Teknologi dapat memfasilitasi siswa dalam mempelajari mata pelajaran yang sulit seperti matematika. Pemahaman limit penting untuk mempelajari materi kalkulus lainnya seperti turunan dan integral. Di perguruan tinggi, mahasiswa mengalami kesulitan dalam mempelajari konsep limit fungsi. Oleh sebab itu, beberapa penelitian mengkaji bagaimana pemanfaatan teknologi untuk membantu mahasiswa dalam mempelajari limit. Penelitian ini diawali dengan penentuan 4 rumusan masalah (RM) yaitu: 1) Alat teknologi apa yang digunakan untuk memfasilitasi pembelajaran limit fungsi? 2) Alat teknologi apa yang paling sering dijadikan acuan? 3) Bagaimana alat teknologi dapat membantu siswa mempelajari konsep limit fungsi? 4) Bagaimana contoh visualisasi alat teknologi dalam mempelajari konsep limit fungsi?. Penelitian ini menggunakan systematic literature review (SLR) yang menggunakan protokol PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) untuk memilih artikel melalui database Google Scholar periode 2013-2023. Protokol PRISMA berisi empat tahapan yaitu identification, screening, eliglibility, dan include. Dari 36 artkel yang tersaring, hanya ada 7 artikel yang dikaji lebih mendalam untuk menjawab ke 4 RM. Hasil penelitian menunjukkan jumlah penelitian tentang limit fungsi dan pemanfaatan teknologi tidak banyak. Hal ini dibuktikan dengan banyaknya artikel yang tersaring hanya 36 artikel. Hanya 7 artikel yang akhirnya terpilih, diantaranya ada 4 artikel yang menggunakan GeoGebra, 1 Maple, 1 video dan audio recorder, dan 1 artikel tidak menyebutkan alat teknologi yang digunakan. Sehingga kesimpulan GeoGebra adalah software yang paling sering dijadikan acuan dalam memvisualisasi konsep limit. Kata Kunci: Limit fungsi; teknologi; systematic literature review (SLR); PRISMA
Exploration of Ethnomathematics in the Traditional House of Sonaf Maubes-Insana Tas’au, Maria Fransiska; Son, Aloisius Loka; Maifa, Talisadika S.
Indonesian Educational Research Journal Vol. 1 No. 1 (2023): Education and Learning Strategies in Various Contexts
Publisher : CV. Samuel Manurung and Co

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56773/ierj.v1i1.11

Abstract

The purpose of this study is (1) to explore the mathematical concepts contained in the sonaf-maubes traditional house, and (2) to find out the symbolic meaning contained in the sonaf maubes traditional house. The type of research used is qualitative research with an ethnographic approach. The subjects in this study were people who could provide explanatory information about something that would be examined, including traditional leaders, guardians of the sonaf maubes traditional house and builders as well as the people of the Usfinit tribe who provided information about the history of the sonaf maubes traditional house. Data collection techniques used are interviews, observation, and documentation. Based on the results of the research, it can be concluded that (1) there are mathematical concepts found in the Sonaf-Maubes traditional house, namely flat shapes, spatial shapes, line concepts, counting concepts, distance concepts, and reflections (reflection), (2) there are symbolic meanings in the Sonaf-Maubes traditional houses on the traditional stone pillar main, roof, attic, doors, stoves and so on
Comprehending Relations and Functions: Introducing and Demonstrating Papan Resi Teaching Aid Siahaan, Meiva Marthaulina Lestari; Hijriani, Lailin; Maifa, Talisadika; Laja, Yosepha Patricia Wua; Deda, Yohanis Ndapa
Smart Society Vol 2, No 2 (2022): December 2022
Publisher : FOUNDAE (Foundation of Advanced Education)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58524/smartsociety.v2i2.103

Abstract

The teachers need help to convey the differences between relations and functions and to make concrete examples. The purpose of the community service team is to help students find and comprehend the theory and concept about relations and functions material for grade 8 by introducing and demonstrating the Papan Resi visual aid.The service held in SMPK Aloysius Niki-Niki, Timor Tengah Utara District, Nusa Tenggara Timur. The service method is based on action research: planning, action, observation, and reflection. The data are collected based on the audiences' observation sheets and response sheets. Data analysis used data triangulation. The results of this community service are that introducing and demonstrating Papan Resi could be beneficial for increasing students' comprehension of SMPK Aloysius Niki-Niki. The constructivist situation influences it, and the service needs to be held for other teaching aids
Praxeological Analysis of the Mathematics Textbook on the Topic of Translation Maifa, Talisadika Serrisanti; Fatimah, Siti; Suryadi, Didi
Proceeding International Conference on Mathematics and Learning Research 2024: Proceeding International Conference on Mathematics and Learning Research
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study analyzes the sequence of tasks in the Mathematics textbook to identify learning obstacles associated with the concept of translation, with a specific focus on the definition of translation. This analysis employs the theory of praxeology, a key concept in the Anthropological Theory of Didactics (ATD). The findings highlight three potential didactical obstacles and one potential epistemological obstacle within the task sequence. Therefore, these findings should be considered by teachers to anticipate and minimize potential obstacles in teaching the concept of translation.
Development of Student Worksheets Using the Context of Local Wisdom on Integers and Fractions Deda, Yohanis Ndapa; Maifa, Talisadika
Mathematics Education Journal Vol. 15 No. 1 (2021): Jurnal Pendidikan Matematika
Publisher : Universitas Sriwijaya in collaboration with Indonesian Mathematical Society (IndoMS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The purpose of this research is to develop a valid, practical and effective junior high school mathematics worksheet. Local wisdom referred to in this study is a traditional food, namely Jagung Bose, Jagung Katemak, Ut Kono, and Laku Tobe, which have become a daily diet for the people of the Indonesia-Timor Leste border community on the Pulau Timor. This research is a kind of development research using the Tessmer formative evaluation model, which consists of two stages of development, namely the preliminary analysis stage and the formative evaluation stage. The subject of this research is the 9th-grade students of Taloeb Junior High School in the border area in 2020. The data collection techniques used include tests, learning outcomes, observation, and interviews. Experts have validated the development of student worksheets using the context of local traditional food wisdom with the results of assessments from material experts, media experts and linguists. Validated by Experts, Students Worksheets (SW) of maths included in the very good category and trial results have shown that the SW meets the practical criteria and has a potential effect on improving junior high school students' mathematics skills and learning outcomes. DOI: https://doi.org/10.22342/jpm.v.i.12824.71-82
Profile of Mathematics Communication Ability of Seventh-Grade Students in Solving Set Problems Based on Cognitive Style Kresensia Usolin; Aloisius Loka Son; Talisadika Serrisanti Maifa; Javier García-García
RANGE: Jurnal Pendidikan Matematika Vol. 4 No. 2 (2023): RANGE Januari 2023
Publisher : Pendidikan Matematika UNIMOR

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32938/jpm.v4i2.3593

Abstract

This study aims to describe the profile of students' mathematical communication ability in solving set problems in terms of field-dependent and field-independent cognitive styles. This research method includes qualitative descriptive research. In this study, the collected data was in the form of words so that it did not emphasize numbers. Participants in this study consisted of three students with a field-dependent cognitive style and three students with a field-independent cognitive style from class VII at one of the junior high schools in North Central Timor Regency. The instruments used are a mathematical communication ability test, Group Embedded Figure Test, and interviews. The results showed that students with a field-independent cognitive style have high mathematical communication abilities. This can be seen from the test results of the three field-independent students who are able to express mathematical ideas through oral, written, demonstration and describe in visual form, are able to analyze, interpret, and evaluate mathematical ideas through oral, written, and other visual forms, and are able to use terms, mathematical notations, and their structures to present ideas, describe relationships, and situation models when solving problems mathematical sets. Meanwhile, students with a field-dependent cognitive style have low mathematical communication abilities. This can be seen from the results of the mathematics communication ability test of the three field-dependent students who have not been able to meet all the indicators of mathematical communication.
Identifying learning obstacles in proof construction for geometric transformations: Conceptual, procedural, and visualization errors Maifa, Talisadika Serrisanti; Suryadi, Didi; Fatimah, Siti
Jurnal Infinity Vol 14 No 3 (2025): VOLUME 14, NUMBER 3, INFINITY
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22460/infinity.v14i3.p673-694

Abstract

This study investigates learning obstacles encountered by pre-service mathematics teachers in constructing proofs for geometric transformations, a topic that has not been extensively examined in previous research. In contrast to prior studies, this research identifies specific types of errors, as well as their interconnections, representing the first step in uncovering learning obstacles. The study followed the four steps of phenomenology: bracketing, intuiting, analyzing, and describing, using written tests and interviews to explore students' errors. The findings reveal that errors can be categorized into three types: visualization errors, conceptual errors, and procedural errors. The analysis of their interconnections revealed that conceptual errors were the primary factor contributing to both procedural and visualization errors. Analyzing these errors led to the identification of epistemological obstacles, which manifested when participants struggled to apply fundamental concepts—such as injectivity, surjectivity, and bijectivity—to more complex tasks. Therefore, the study concludes that the primary learning obstacle discovered is an epistemological obstacle.
Identifying learning obstacles in proof construction for geometric transformations: Conceptual, procedural, and visualization errors Maifa, Talisadika Serrisanti; Suryadi, Didi; Fatimah, Siti
Jurnal Infinity Vol 14 No 3 (2025): VOLUME 14, NUMBER 3, INFINITY
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22460/infinity.v14i3.p673-694

Abstract

This study investigates learning obstacles encountered by pre-service mathematics teachers in constructing proofs for geometric transformations, a topic that has not been extensively examined in previous research. In contrast to prior studies, this research identifies specific types of errors, as well as their interconnections, representing the first step in uncovering learning obstacles. The study followed the four steps of phenomenology: bracketing, intuiting, analyzing, and describing, using written tests and interviews to explore students' errors. The findings reveal that errors can be categorized into three types: visualization errors, conceptual errors, and procedural errors. The analysis of their interconnections revealed that conceptual errors were the primary factor contributing to both procedural and visualization errors. Analyzing these errors led to the identification of epistemological obstacles, which manifested when participants struggled to apply fundamental concepts—such as injectivity, surjectivity, and bijectivity—to more complex tasks. Therefore, the study concludes that the primary learning obstacle discovered is an epistemological obstacle.