Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JOURNAL OF APPLIED INFORMATICS AND COMPUTING

HANA: An AI Chatbot for Islamic Jurisprudence on Menstruation using SBERT and TF-IDF Masuzzahra, Tsaura Rafah; Khothibul Umam; Hery Mustofa; Maya Rini Handayani
Journal of Applied Informatics and Computing Vol. 9 No. 3 (2025): June 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i3.9449

Abstract

The advancement of Artificial Intelligence (AI), particularly in Natural Language Processing (NLP), has opened new opportunities for religious technological innovation, especially in addressing practical Islamic jurisprudence issues such as menstruation (fiqh haid). This research proposes and implements HANA, an AI chatbot developed for Telegram, utilizing a hybrid approach combining Term Frequency-Inverse Document Frequency (TF-IDF) and Sentence-BERT (SBERT) models. A curated dataset of over 1000 question-answer pairs from classical and contemporary Islamic literature was used, primarily based on the Shafi'i school of thought. The chatbot matches user queries through a two-stage retrieval: initial keyword matching via TF-IDF and deeper semantic matching via SBERT embeddings. Evaluations were conducted by comparing TF-IDF, SBERT, and hybrid approaches using cosine similarity, precision, recall, and F1-score metrics, focused on top-1 retrieval accuracy. HANA achieved an average cosine similarity score of 0.6581 and a semantic relevance rating of 87% based on expert validation, while User Acceptance Testing (UAT) involving 15 respondents indicated 86.7% satisfaction. Although the system is deployed as a proof-of-concept on Google Colab without persistent hosting, it demonstrates the viability of lightweight AI chatbots for Shariah consultation services. Future improvements include multi-turn conversation handling and integration with large language models for better context understanding. This research contributes to expanding NLP applications within techno-dakwah initiatives, providing a scalable approach to enhance women's access to Islamic jurisprudence knowledge.
Opinion Classification on IMDb Reviews Using Naïve Bayes Algorithm Putri, Amiliya; Umam, Khothibul; Mustofa, Hery
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.9831

Abstract

This study aims to classify user opinions on IMDb movie reviews using the Multinomial Naïve Bayes algorithm. The dataset consists of 50,000 reviews, evenly distributed between 25,000 positive and 25,000 negative reviews. The preprocessing stage includes cleaning, case folding, stopword removal, tokenization, and lemmatization using the NLTK library. Text features are represented through the TF-IDF method to capture the significance of each word in the documents. The Multinomial Naïve Bayes model was trained using the hold-out validation technique with an 80:20 split for training and testing data. Hyperparameter tuning of α (Laplace smoothing) was conducted to enhance model stability and accuracy. The model’s performance was evaluated using accuracy, precision, recall, and F1-score metrics, supported by a confusion matrix visualization. The results show that the model achieved an accuracy of 87%, with precision of 87.9%, recall of 85.4%, and an F1-score of 86.6%. In comparison, Logistic Regression as a baseline algorithm achieved an accuracy of 91%. Nevertheless, the Naïve Bayes algorithm remains competitive and computationally efficient for large-scale text data, making it highly relevant for sentiment analysis of movie reviews.
Comparative Analysis of Penetration Testing Frameworks: OWASP, PTES, and NIST SP 800-115 for Detecting Web Application Vulnerabilities Imtias, Muhamad Bunan; Umam, Khothibul; Mustofa, Hery; Subowo, Moh Hadi
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.9846

Abstract

Web application security faces increasingly complex challenges as digital architectures evolve, necessitating the selection of appropriate and effective penetration testing methods. This study presents a comparative analysis of the OWASP Testing Guide, PTES, and NIST SP 800-115 frameworks in detecting web application vulnerabilities. Through experiments on DVWA and OWASP Juice Shop, the frameworks were evaluated based on detection speed, vulnerability count, and severity. The results highlight a clear trade-off: OWASP proved the most efficient (85 minutes average, 59 total vulnerabilities), making it ideal for rapid assessments. PTES demonstrated the most comprehensive technical depth (63 vulnerabilities, highest severity) but required the most time, while NIST SP 800-115 (49 vulnerabilities) excelled in compliance and risk management integration. The study recommends selecting OWASP for efficiency, PTES for deep technical audits, and NIST for regulatory alignment.