Claim Missing Document
Check
Articles

Found 14 Documents
Search

Pengaruh Ekonomi Konvensional terhadap UMKM Industri Batik di Kabupaten Kuatan Singingi Surmayanti, Surmayanti
Indonesian Research Journal on Education Vol. 5 No. 1 (2025): Irje 2025
Publisher : Fakultas Keguruan dan Ilmu Pendidikan, Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/irje.v5i1.1924

Abstract

Konsep ekonomi konvensional dengan system ekonomi kapitalis, sosialis, komunisme, dan fasisme telah lama berjalan di muka bumi. Pasang surut keberhasilan system tersebut menjadi taruhan keberhasilan dalam membangun perekonomian suatu negara bahkan dunia dalam mensejahterakan seluruh masyarakat dunia. Hal ini di buktikan dengan adanya UMKM industri batik yang ada di Kabupaten Kuantan Singingi. Industri UMKM batik ini sangat menguntungkan masyarak yang ada di Kabupaten Kuantan Singingi untuk memberikan lapangan pekerjaan bagi peserta pelatihan yang tidak memiliki anak keturunan dan kerabat dari golongan generasi millenial penerus bisnis digital, kami tetap mendorong mereka melalui pendampingan yang intensif sampai mereka paham, mau dan mampu menggunakan aplikasi ecommerce dalam bisnisnya.
Cervical Cancer Classification Using Multi-Directional GLCM Shape-Texture Features in LBC Surmayanti, Surmayanti; Nozomi, Irohito; Aldi, Febri
Sinkron : jurnal dan penelitian teknik informatika Vol. 9 No. 4 (2025): Articles Research October 2025
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i4.15318

Abstract

Alsalatie, M., Alquran, H., Mustafa, W. A., Zyout, A., Alqudah, A. M., Kaifi, R., & Qudsieh, S. (2023). A New Weighted Deep Learning Feature Using Particle Swarm and Ant Lion Optimization for Cervical Cancer Diagnosis on Pap Smear Images. Diagnostics, 13(17), 2762. https://doi.org/10.3390/diagnostics13172762 Arbyn, M., Weiderpass, E., Bruni, L., Sanjosé, S. de, Saraiya, M., Ferlay, J., & Bray, F. (2020). Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. The Lancet Global Health, 8(2), e191–e203. https://doi.org/10.1016/S2214-109X(19)30482-6 Attallah, O. (2023). Cervical Cancer Diagnosis Based on Multi-Domain Features Using Deep Learning Enhanced by Handcrafted Descriptors. Applied Sciences, 13(3), 1916. https://doi.org/10.3390/app13031916 Chaddad, A., & Tanougast, C. (2017). Texture Analysis of Abnormal Cell Images for Predicting the Continuum of Colorectal Cancer. Analytical Cellular Pathology, 2017(1), 8428102. https://doi.org/10.1155/2017/8428102 Díaz del Arco, C., & Saiz Robles, A. (2024). Advancements in Cytological Techniques in Cancer. In Handbook of Cancer and Immunology (pp. 1–46). Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_385-1 Garg, M., & Dhiman, G. (2021). A novel content-based image retrieval approach for classification using GLCM features and texture fused LBP variants. Neural Computing and Applications, 33(4), 1311–1328. https://doi.org/10.1007/s00521-020-05017-z Huang, X., Liu, X., & Zhang, L. (2014). A Multichannel Gray Level Co-Occurrence Matrix for Multi/Hyperspectral Image Texture Representation. Remote Sensing, 6(9), 8424–8445. https://doi.org/10.3390/rs6098424 Ikeda, K., Oboshi, W., Hashimoto, Y., Komene, T., Yamaguchi, Y., Sato, S., Maruyama, S., Furukawa, N., Sakabe, N., & Nagata, K. (2021). Characterizing the Effect of Processing Technique and Solution Type on Cytomorphology Using Liquid-Based Cytology. https://dx.doi.org/10.1159/000519335   Kaur, H., Sharma, R., & Kaur, J. (2025). Comparison of deep transfer learning models for classification of cervical cancer from pap smear images. Scientific Reports, 15(1), 3945. https://doi.org/10.1038/s41598-024-74531-0 Merlina, N., Noersasongko, E., Nurtantio, P., Soeleman, M. A., Riana, D., & Hadianti, S. (2021). Detecting the Width of Pap Smear Cytoplasm Image Based on GLCM Feature. In Y.-D. Zhang, T. Senjyu, C. SO–IN, & A. Joshi (Eds.), Smart Trends in Computing and Communications: Proceedings of SmartCom 2020 (pp. 231–239). Springer. https://doi.org/10.1007/978-981-15-5224-3_22 Mishra, G. A., Pimple, S. A., & Shastri, S. S. (2021). An overview of prevention and early detection of cervical cancers. Indian Journal of Medical and Paediatric Oncology, 32, 125–132. Plissiti, M. E., Nikou, C., & Charchanti, A. (2011). Combining shape, texture and intensity features for cell nuclei extraction in Pap smear images. Pattern Recognition Letters, 32(6), 838–853. https://doi.org/10.1016/j.patrec.2011.01.008 Raga Permana, Z. Z., & Setiawan, A. W. (2024). Classification of Cervical Intraepithelial Neoplasia Based on Combination of GLCM and L*a*b* on Colposcopy Image Using Machine Learning. 2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 035–040. https://doi.org/10.1109/ICAIIC60209.2024.10463256 Rastogi, P., Khanna, K., & Singh, V. (2023, August 8). Classification of single‐cell cervical pap smear images using EfficientNet—Rastogi—2023—Expert Systems—Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.13418 Singh, D., Vignat, J., Lorenzoni, V., Eslahi, M., Ginsburg, O., Lauby-Secretan, B., Arbyn, M., Basu, P., Bray, F., & Vaccarella, S. (2023). Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. The Lancet Global Health, 11(2), e197–e206. https://doi.org/10.1016/S2214-109X(22)00501-0 Singh, T. G., & Karthik, B. (2023). Accurate Cervical Tumor Cell Segmentation and Classification from Overlapping Clumps in Pap Smear Images. In S. N. Singh, S. Mahanta, & Y. J. Singh (Eds.), Proceedings of the NIELIT’s International Conference on Communication, Electronics and Digital Technology (pp. 659–673). Springer Nature. https://doi.org/10.1007/978-981-99-1699-3_46 Strander, B., Andersson-Ellström, A., Milsom, I., Rådberg, T., & Ryd, W. (2007). Liquid-based cytology versus conventional Papanicolaou smear in an organized screening program. Cancer Cytopathology, 111(5), 285–291. https://doi.org/10.1002/cncr.22953 Wahidin, M., Febrianti, R., Susanty, F., & Hasanah, S. R. (2022, March 1). Twelve Years Implementation of Cervical and Breast Cancer Screening Program in Indonesia—PMC. https://pmc.ncbi.nlm.nih.gov/articles/PMC9360967/
Case Study: Comprehensive Midwifery Care of Mrs.I at RSU Bahagia Makassar Surmayanti, Surmayanti; Jufri.P, Fitriana Jufri.P
Jurnal EduHealth Vol. 13 No. 02 (2022): Jurnal eduHealth, Periode Oktober - December, 2022
Publisher : Sean Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (188.377 KB)

Abstract

The Maternity Maternal Mortality Rate (MMR) ) and Infant Mortality Rate (IMR). Are still relatively high in Indonesia. The various effort made by the government, oneif wich is trough Comprehensife Midwifery Care which consists of integrated Midwife Care starting from Pregnancy, Maternity, Neonatus, Postpartum, Family Planning (KB). Written using the Midwifery Care Documentation (ASKEB) and SOAP methods in descriptive and narative form, and continous assesmnet is carried out (Continuity of care). The subject of this research is Mrs. I, 27 years old at RSU Bahagia Makassar, the study was carried out on March 7 2022 to May 16 2022. From the results of the study on pregnancies wich were carried out 3 times, Mrs I have a high risk of experiencing chronich energy ddeficiency (KEK) where the Upper Arm Circumference (LILA) is <23,5 cm. At Maternity Mother Care Mrs. I experienced labor with a long second stage. At BBL care the baby Mrs. I had Low Birth Weight (LBW), and at Family Planning Care (KB) there were no complications and the mother wanted to use implant contraception. The conclusion in this study is that the practice is in accordance with the theory and there is no motive. Suggestions from the studies that have been carried out are to continue efforts to provide midwifery services to prevent complitation.
COMPARATIVE ANALYSIS OF SOBEL AND CANNY METHOD IN BATIK KAWUNG IMAGE Surmayanti, Surmayanti; Sumijan, Sumijan
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 10 No. 3 (2024): Juni 2024
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v10i3.3066

Abstract

Abstract: Abstract: this study evaluates and compares the performance of two edge detection methods Sobel method and Canny method on batik image.  Batik images have unique characteristics and complex patterns, making it difficult to analyze the edges.  This study presents a comparison of the results using sobel and canny edge detection methods on batik kawung images both from peak signal-to-noise reatio and from mean squared error. The results showed that canny edge detection was better than sobel method. This can be seen from the results of PSNR and MSE that is 100%. This analysis is determined by considering factors such as the accuracy of edge detection, sensitivity to noise, and the ability to handle the complexity of batik drawing patterns. The results of this study provide a detailed description of the advantages and disadvantages of each method in the image of batik kawung. The conclusions that can be drawn from this study can provide valuable guidance for choosing the optimal edge detection method in image analysis of batik kawung and others.      Keywords: batik kawung; canny; MSE; PSNR; sobel  Abstrak: Penelitian ini mengevaluasi dan membandingkan kinerja dua metode deteksi tepi metode Sobel dan metode Canny pada citra batik.  Gambar batik mempunyai ciri-ciri yang unik dan pola yang kompleks, sehingga menyulitkan analisis tepian.  Penelitian ini menyajikan perbandingan hasil menggunakan metode deteksi tepi sobel dan canny pada citra batik kawung baik dari peak signal-to-noise reatio maupun dari mean squared error. Hasil penelitian ini menunjukkan bahwa deteksi tepi canny lebih baik dibandingkan dari metode sobel. Hal ini dapat dilihat dari hasil PSNR dan MSE yang dihasilkan yaitu 100%. Analisis ini ditentukan dengan mempertimbangkan faktor-faktor seperti keakuratan deteksi tepi, kepekaan terhadap noise, dan kemampuan menangani kompleksitas pola gambar batik. Hasil penelitian ini memberikan gambaran secara detail mengenai kelebihan dan kekurangan masing-masing metode pada citra batik kawung. Kesimpulan yang dapat diambil dari penelitian ini dapat memberikan panduan berharga untuk memilih metode deteksi tepi yang optimal dalam analisis citra batik kawung dan yang lainnya. Kata kunci: batik kawung; canny; MSE; PSNR; sobel