Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Hybrid Frequency and Period Based for Angular Speed Measurement of DC Motor Using Kalman Filter Novendra Setyawan; Basri Noor Cahyadi; Ermanu Azizul Hakim; Mas Nurul Achmadiah
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 7, No. 2, May 2022
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v7i2.1420

Abstract

The Incremental Rotary Encoder have been widely used to measure the angular speed of electrical drive such as Permanent Magnet Direct Current Motor (PMDCM). Nevertheless, speed measurement of PMDCM from the encoder signals can be subject to errors in some special condition such as in low resolution encoder. There are two main methods to measure the angular speed of PMDCM through encoder signal such as frequency-based and period-based wich has its own properties. Hence in this reseach aimed to improve the angular speed measurement with hybridization of frequency and period-based measurement. The Hybrid method is defined as paralleling the period and frequency then estimated the angular speed using sensor fusion with Kalman Filter. The experiment is doing by comparing of all method to get the best way in measuring. From the experimental showed that the Kalman filter parameter was fine tuned that resulting the sensor fusion or the mixed measurement between the frequency-based and the period based measure the angular speed accurately.
Buck-boost Converter using GA-based MPPT for Solar Energy Optimization Syafaah, Lailis; Faruq, Amrul; Noor Cahyadi, Basri; Hidayat, Khusnul; Setyawan, Novendra; Lestandy, Merinda; Zulfatman
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 8, No. 3, August 2023
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v8i3.1658

Abstract

Energy optimization in the Solar Power Plant system needs to have more attention. Indonesia is a tropical country that has two seasons, where the weather and cloud movements are frequently unpredictable, especially in the southern region of Java Island. To overcome this problem, an inverter equipped with maximum power point tracking (MPPT) was used. However, the current MPPT switching system was still not optimal with an efficiency of around 90%. In this study, the installation of MPPT was carried out in order to optimize the power in solar photovoltaic (PV) system due to the fluctuations of solar irradiation at PT. Jatinom Indah Agri, Blitar City. The maximum power generated by solar photovoltaic could be achieved by using the combination of DC - DC converter and artificial intelligence. In this study, the modeling of solar PV system was made using MATLAB software, where the design of the solar PV system consisted of a PV module with capacity 240W, DC to DC converter, battery and MPPT. Genetic Algorithm (GA)-based MPPT had been tested and compared to Particle Swarm Optimization (PSO)-based MPPT and conventional MPPT, where the GA-based MPPT worked well in finding the maximum power point in the solar photovoltaic system. It was found that GA-based MPPT produced a maximum power point close to PV power with an efficiency of 92%, while the effciciency of PSO-based MPPT and conventional MPPT were 85% and 79% respectively. In selecting the method for designing MPPT, a method with a wide range of sample data is required. This is due to the fluctuation of solar irradiance received by the solar PV.
Hybrid Fuzzy-PID Design Based on Flower Pollination Algorithm for Frequency Control of Micro-Hydro Power Plant Hakim, Ermanu Azizul; Norazizah; Zulfatman; Setyawan, Novendra
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 9, No. 2, May 2024
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22219/kinetik.v9i2.1755

Abstract

Micro-Hydro Power (MHP) Plant System is the renewable energy resource that utilizes water potential energy. In MHP, the energy flows depend on the rotation speed of the generator which cause instability and nonlinearity in the frequency of electrical power. It is also supported by the fluctuation on the electricity load. Therefore, this study used Fuzzy Logic Controller combined with FPA-tuned PID to control the power frequency of the load. This test consisted of 4 stages, namely testing the system without a controller, testing the system using PID, testing the MHP system with a PID controller tuned to the Flower Pollination Algorithm, and testing the system using a Fuzzy PID tuned by the Flower Pollination Algorithm. Based on these tests, the Micro-Hydro Power Plant system response using a Fuzzy PID-tuned FPA controller performed best, especially in accelerating the time to a steady state, reducing overshoot and undershoot with the fastest rise time. As for the output signal from the controller used in the MHP, optimizing the Flower Pollination Algorithm for the Kp, Ki, and Kd parameters is effective and smooth in improving all elements in the Micro-Hydro Power Plant frequency stabilization. Meanwhile, the role of the fuzzy logic controller (FLC) is not very significant, and there is relatively a lot of noise in the output signal of the Fuzzy PID controller itself in terms of stabilizing the load frequency on the Micro-Hydro Power Plant.