Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Indonesian Journal of electronics, electromedical engineering, and medical informatics

A Low Cost Negative Pressure Wound Therapy Based on Arduino Fikri Fahriansyah Pramono; Sari Luthfiyah; Triana Rahmawati; Nur Hasanah Ahniar
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 2 (2020): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i2.2

Abstract

Instant life patterns and eating patterns and inappropriate exercise schedules are thought to be one of the causes of the increasing number of diabetes mellitus. Complications that can be caused by this disease are in the form of excessive susceptibility to infection, so that it develops into diabetic ulcers and can lead to amputations in these parts of the body. The purpose of this study is to design a tool used to treat diabetic ulcers. The contribution of this study is that the system can help remove fluid from the wound with controlled suction pressure so that it can facilitate the healing process faster. This Negative Pressure Wound Therapy (NPWT) tool works based on negative pressure from the vacuum motor by utilizing MPXV4115VC6U and MPXV5050VC6T1 pressure sensors at a pressure limit of 0 to -350 mmHg. Using an Arduino microcontroller for data processing, it will then be displayed on the 2x16 LCD. The MPX4115VC6U sensor produces a pressure of -55.97 mmHg when setting -50 mmHg and the resulting output is 3.32 volts, while the MPXV5050VC6T1 sensor produces a pressure of 51.18 mmHg at a setting of 50 mmHg and the resulting output is 3.18 volts, from the above data it can be seen if the MPX5050VC6TI sensor has a smaller error given
An Improved Measurement Accuracy of Fetal Heart Rate using Digital Filter Riska Setyawati; Priyambada Cahya Nugraha; Her Gumiwang Ariswati; Nur Hasanah Ahniar
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 2 No 3 (2020): November
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i3.5

Abstract

Non stress test, there are several parameters including the fetal Doppler. fetal doppler is used to detect the fetal heart in the womb. It can be seen that the fetal heart rate in the womb under normal circumstances is in the range of 120-140 beats per minute. Noise on doppler fetal output can affect fetal heart rate readings. the purpose of this research is to design a non stress test device that is displayed on nextion. The contribution of this research is the creation of a portable device with nextion display and using analog and digital filters that can be used as noise removal. the method used to eliminate noise by using a bandpass type filter design frequency 20-40 Hz by designing a large frequency suppression outside the cutoff so that noise is not counted as a fetal heart rate. to detect the fetal heart rate in the mother's womb using a piezoelectric sensor. then the fetal heart rate obtained is filtered and the data is processed using Arduino after the results of processing the filter between analog bandpass and digital bandpass type Chebyshev method I then the results of the tool will be displayed on nextion. The results showed that measurements on analog filter modules that have been made produce an error value of 8.62% and digital filters that have been made produce an error value of 12.97%. The results of this study can be applied to fetal heart rate gauges portable at a health clinic.
A Simple Medical Record System of Non-Invasive Blood Glucose Level Measurement Results for Diabetes Care Using Graphical User Interface (GUI) MATLAB Nur Hasanah Ahniar
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 3 No 3 (2021): August
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i3.3

Abstract

We present a medical records system and reminders to patients of the measurement results of non-invasive blood glucose levels. Measuring blood glucose levels is vital in avoiding potential adverse health effects like diabetes. Diabetes is a chronic metabolic disorder caused by a decrease in the pancreas to produce insulin. Generally, measuring blood glucose levels using the conventional method is injure the patient's finger. Currently, the non-invasive method was famous as one of the detections of blood glucose by applying the physical properties of laser absorption. In this paper, we use the photodiode as a detector, the LED as a sensor, and a signal conditioning circuit. The results showed that non-invasive glucose monitoring has the potential to measure glucose levels with sensitivity and linearity of 3.21 mg/dL and 98%, respectively. As a result of measuring the blood glucose levels of the subject was displayed on the LCD module was designed. We designed a simple application and medical record using Blynk applications and GUI MATLAB for recording the measurement results of blood glucose level. In the future, applications that have been developed can be used by doctors for monitoring the measurement of the blood glucose level and provide information to patients by mobile applications, sending an email or message the measurement results, the decision of a disease or not, and reminds the re-measurement time.
Analysis of Changes in Flow Setting Against Rise Time Using Gas Board 7500E Sensor on Bubble CPAP Andjar Pudji; Farid Amrinsani; Sari Luthfiyah; Lusiana Lusiana; Shubhrojit Misra; Nur Hasanah Ahniar; Yenda Mita Barus; Lamidi Lamidi
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 2 (2022): May
Publisher : Department of electromedical engineering, Health Polytechnic of Surabaya, Ministry of Health Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v4i2.8

Abstract

Respiratory distress in neonates is one of the biggest problems encountered on a daily basis. Respiratory distress looks like rapid breathing in a newborn. CPAP Bubble is the right treatment in this case. Rise time is the time for airway pressure to reach the maximum standard value. A fast time value can make it possible to bring the breath pressure to a standard level. This study aims to analyze changes in setting flow to rise time using a gasboard sensor 7500E on a CPAP bubble device. The main advantage of this proposed method is that the results are displayed in the form of graphics, portable and there is data storage. This design uses a Gasboard 7500E sensor as a detector of oxygen concentration, a TFT LCD as a graphic display and an SD Card as data storage. The data collection is in the form of the average rise time of oxygen concentration followed by changes in its rate. Data were taken five times with three different CPAPs. The results showed that the increase in the rate affect the rise time of the CPAP oxygen concentration.