Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

Environmental Monitoring System using Wireless Multi-Node Sensors based Communication System on Volcano Observations Drones Huda, Achmad Torikul; Setiawardhana, Setiawardhana; Dewantara, Bima Sena Bayu; Sigit, Riyanto
JOIV : International Journal on Informatics Visualization Vol 8, No 2 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.1961

Abstract

Indonesia is on the Ring of Fire and has the world's most active volcanoes. Volcanic activity has a significant effect on the landscape and on the people who live there. The difficulty of evacuating and helping victims requires hard work and sometimes even the safety of the rescue team itself. For this reason, high-tech tools are needed. Unmanned aerial vehicles (UAVs), also called drones, have become a hopeful tool for remote environmental monitoring in recent years. The system design has a monitoring platform, gateway, and sensor nodes attached to the UAV, which monitors the content of toxic gas contamination in the air. Using IoT technology, sensor data is sent wirelessly to a central monitoring station for a thorough and accurate volcanic activity study. This system is a flexible and complete way to monitor volcanic activity, learn more about it, and make it easier to respond to disasters. Tests are also done to measure system speed, including latency, and determine network service quality. The results show that data is successfully sent in real-time from the sensor nodes to the monitoring system. The average Round-Trip time for the payload transmission is 446.046226 ms. This shows how well the system works to send data from the sensors connected to the UAV to the monitoring station. The UAV has sensor nodes and a monitoring system platform. These can be used to build and optimize disaster mitigation systems.
Face Recognition for Logging in Using Deep Learning for Liveness Detection on Healthcare Kiosks Ryando, Catoer; Sigit, Riyanto; Setiawardhana, Setiawardhana; Sena Bayu Dewantara, Bima
JOIV : International Journal on Informatics Visualization Vol 9, No 1 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.1.2759

Abstract

This study explores the enhancement of healthcare kiosks by integrating facial recognition and liveness detection technologies to address the limitations of healthcare service accessibility for a growing population. Healthcare kiosks increase efficiency, lessen the strain on conventional institutions, and promote accessibility. However, there are issues with conventional authentication methods like passwords and RFID, such as the possibility of them being lost, stolen, or hacked, which raises privacy and data security problems. Although it is more secure, face recognition is susceptible to spoofing attacks. In order to improve security, this study integrates liveness detection with face recognition. Data preparation is done using deep learning algorithms, namely FaceNet and Multi-task Cascaded Convolutional Neural Networks (MTCNN). Real-time authentication of persons is verified by the system, which provides correct identification of them. Techniques for enhancing data help the model become more accurate and robust. The system's usefulness is shown by the outcomes of the experiments. The VGG16 model outperforms alternative designs like MobileNet V2, ResNet-50, and DenseNet-121, achieving 100% accuracy in liveness detection. Face recognition and liveness detection together greatly improve security, which makes it a dependable option for real-world healthcare applications. Through the ability to differentiate between genuine and fake faces and foil spoofing efforts, facial liveness detection may boost security. This study offers insights into building biometric systems for safe and effective identity verification in the healthcare industry.
Cloud Computing-based Shrimp Pond Water Quality Prediction Intelligent Service System Suasono, Zaikhul Sulthon; Setiawardhana, Setiawardhana; Winarno, Idris; Gunawan, Agus Indra
JOIV : International Journal on Informatics Visualization Vol 9, No 4 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.4.2862

Abstract

Maintaining water quality is an essential factor in the success of shrimp farming, particularly in conventional and semi-intensive methods in Indonesian. Poor water quality will affect shrimp's survival, reproduction, development, and harvest yield. In order to furnish data regarding future water quality conditions, This research aims to create an intelligent cloud-based water quality prediction system for shrimp ponds that can provide accurate predictions regarding future water quality conditions. The system utilizes the WQI dataset gathered from four different shrimp farming sites, totaling 408 samples, each location exhibiting a different set of values. The model will be trained using four parameters: pH, DO, salinity, and temperature. The WQI dataset will be pre-processed to address missing data, outliers, and standardization. The water quality prediction model uses three machine learning algorithms: SVM, ANN, and MLR. The model's performance results are evaluated using MAE, RMSE, and R². The results indicate that the ANN model is the most effective, achieving an MAE: 0.4023, RMSE: 0.5336, and R²: 0.7178 for temperature predictions, and an MAE: 0.4080, RMSE: 0.5942, and R²: 0.5997 for salinity. The SVM model had mixed results for temperature, with an MAE: 0.3645 and RMSE: 0.4823, but it performed poorly for DO, as evidenced by a negative R² of -0.2428. The MLR model provided reasonable temperature predictions MAE: 0.4953, RMSE: 0.6370, R²: 0.5602. Subsequent research endeavors should prioritize the augmentation of the dataset size and the incorporation of temporal dimensions in order to enhance the precision of predictive outcomes.